Publikace UTB
Repozitář publikační činnosti UTB

Metodika předpovědi digitální šedé ekonomiky

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Metodika předpovědi digitální šedé ekonomiky cs
dc.title The methodology of digital shadow economy estimation en
dc.contributor.author Gasparėnienė, Ligita
dc.contributor.author Bilan, Yuriy
dc.contributor.author Remeikienė, Rita
dc.contributor.author Ginevičius, Romualdas
dc.contributor.author Čepel, Martin
dc.relation.ispartof E a M: Ekonomie a Management
dc.identifier.issn 1212-3609 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 20
utb.relation.issue 4
dc.citation.spage 20
dc.citation.epage 33
dc.type article
dc.language.iso en
dc.publisher Technical University of Liberec
dc.identifier.doi 10.15240/tul/001/2017-4-002
dc.relation.uri https://dspace.tul.cz/handle/15240/21376
dc.subject Causal variables en
dc.subject Digital shadow economy en
dc.subject Indicators of shadow economy en
dc.subject MIMIC model en
dc.subject Shadow economy en
dc.description.abstract The article introduces a new methodology of digital shadow economy estimation, which is based on the principles of the MIMIC method. This new methodology complements traditional methodologies of shadow economy estimation with such a component as digital shadow economy. Our analysis of the most popular today methods of shadow economic estimation proves that, despite some of its drawbacks, the MIMIC model can be treated as the most comprehensive and appropriate method for such calculations since it takes into account both causal and indicators of shadow economy. As the causal variables here, as applied to digital shadow economy, we use household access to the Internet and IT overall, the volume of non-cash payments and the use of most advanced fi nancial instruments. While as the indicators of the digital shadow economy spread we use: the volume of non-cash payments at online platforms, the frequency of cryptocurrency payments, and the cost of parcels to which customs duties have not been applied. For further empirical verifi cation of the model proposed here, numerical values of both causal variables and indicators would be necessary. Unfortunately, offi cial statistical sources are unable to provide such data in full volume, especially when it comes to cryptocurrencies and other informal payments. Thus, in our further research we plan to not only prove the practical applicability of the offered here model for estimations of digital shadow economy size as well as overall size of shadow economy on the examples of particular countries, but also to accumulate the necessary statistics for such calculations. © 2017, Technical University of Liberec. All rights reserved. en
utb.faculty Faculty of Management and Economics
dc.identifier.uri http://hdl.handle.net/10563/1007713
utb.identifier.obdid 43877299
utb.identifier.scopus 2-s2.0-85040239274
utb.identifier.wok 000419822200002
utb.source j-scopus
dc.date.accessioned 2018-02-26T10:20:00Z
dc.date.available 2018-02-26T10:20:00Z
dc.description.sponsorship MIP-15642, Lietuvos Mokslo Taryba
dc.description.sponsorship Research Council of Lithuania [MIP-15642]
dc.rights Attribution-NonCommercial 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Bilan, Yuriy
utb.fulltext.affiliation Ligita Gasparėnienė, Yuriy Bilan, Rita Remeikienė, Romualdas Ginevičius, Martin Čepel Ligita Gasparėnienė, Dr. Mykolas Romeris University ligitagaspareniene@mruni.eu doc. Dr. Yuriy Bilan Research Associate Tomas Bata University in Zlin Faculty of Management and Economics Centre of Applied Economic Research yuriy_bilan@yahoo.co.uk Rita Remeikienė, Dr. Mykolas Romeris University rita.remeikiene@mruni.eu Prof. habil. dr. Romualdas Ginevičius Vilnius Gediminas Technical University romualdas.ginevicius@vgtu.lt Dr. Martin Čepel, PhD., MBA LIGS University LLC Honolulu cepel@benzinol.com
utb.fulltext.dates -
utb.fulltext.references Augustinaitis, A., Rudzkienė, V., Petrauskas, R. A., Dagytė, I., Martinaitytė, E., Leichteris, E., & Žilionienė, I. (2009). Lietuvos e. valdžios gairės: ateities įžvalgų tyrimas. Kolektyvinė monografija. Mykolo Romerio Universitetas. Bossler, A. M., & Holt, T. J. (2012). Patrol officers’ perceived role in responding to cybercrime. Policing: an international journal of police strategies & management, 35(1), 165-181. doi:10.1108/13639511211215504. Buehn, A., & Schneider, F. (2012). Shadow economies around the world: novel insights, accepted knowledge, and new estimates. International Tax and Public Finance, 19(1), 139-171. doi:10.1007/s10797-011-9187-7. Ciaian, P., Rajcaniova, M., & Kancs, D. A. (2016). The economics of BitCoin price formation. Applied Economics, 48(19), 1799-1815. doi:10.1080/00036846.2015.1109038. Cicekli, E. (2016). Graduate skills requirements for effective performance in the banking sector. Business: Theory and Practice, 17(4), 317-324. doi:10.3846/btp.17.11127. Elgin, C., & Oztunali, O. (2012). Shadow economies around the world: model based estimates. [Bogazici University Department of Economics Working Papers, 5]. pp. 1-48. Elgin, C., & Schneider, F. (2013). Shadow economies in OECD countries: DGE vs. MIMIC approaches. [Bogazici University Department of Economics Working Papers, No. 2013/13]. EU Commission. (2013). Regulation (EU) No. 549/2013 of the European Parliament and of the Council of 21 May 2013 on the European system of national and regional accounts in the European Union Text with EEA relevance. Eurostat Database. (2016). Eurostat: Building the system of national accounts – non-observed sector. Retrieved December 15, 2016. Eyal, I., & Sirer, E. G. (2014, March). Majority is not enough: Bitcoin mining is vulnerable. In International Conference on Financial Cryptography and Data Security (pp. 436-454). Berlin Heidelberg: Springer. doi:10.1007/978-3-662-45472-5_28. Duygun Fethi, M., Fethi, S., & Turan Katircioglu, S. (2006). Estimating the size of the Cypriot underground economy: A comparison with European experience. International Journal of Manpower, 27(6), 515-534. doi:10.1108/01437720610690464. Galdikienė, L. (2013). Bitkoinai – ateities valiuta ar vienadienė žvaigždė? [Bitcoins – a future currency or an instant star]. Delfi News. Galloppo, G., Paimanova, V., & Aliano, M. (2015). Volatility and Liquidity in Eastern Europe Financial Markets under Effi ciency and Transparency Conditions. Economics and Sociology, 8(2), 70-92. doi:10.14254/2071-789X.2015/8-2/6. Gaspareniene, L., & Remeikiene, R. (2015). Digital shadow economy: A critical review of the literature. Mediterranean Journal of Social Sciences, 6(6S5), 402-409. doi:10.5901/mjss.2015.v6n6s5p402. Gasparėnienė, L., Remeikienė, R., & Schneider, F. (2017). Concepts, motives and channels of digital shadow economy: consumer’s attitude. Journal of Business Economics and Management, 18(2), 273-287. doi:10.3846/16111699.2016.1214620. Georgiou, G. M. (2007). Measuring the size of the informal economy: a critical review. Occasional Paper in Economics, 7(1). Hatipoglu, O., & Ozbek, G. (2011). On the political economy of the informal sector and income redistribution. European Journal of Law and Economics, 32(1), 69-87. doi:10.1007/s10657-010-9179-6. Herwartz, H., Tafenau, E., & Schneider, F. (2015). One share fi ts all? Regional variations in the extent of the shadow economy in Europe. Regional Studies, 49(9), 1575-1587. doi:10.1080/00343404.2013.848034. Holt, T. J., Blevins, K. R., & Burkert, N. (2010). Considering the pedophile subculture online. Sexual Abuse, 22(1), 3-24. doi:10.1177/1079063209344979. Juškienė, G. (2015). Overview of the methods used to ensure exhaustiveness the national accounts of Lithuania. Lithuanian Department of Statistics. Kaufmann, D., & Kaliberda, A. (1996). Integrating the unoffi cial economy into the dynamics of post-socialist economies: A framework of analysis and evidence. [The World Bank, Policy Research Working Paper Series, No 1691]. doi:10.1596/1813-9450-1691. Ključnikov, A., Belás, J., Kozubíková, L., & Paseková, P. (2016). The Entreprenurial Perception of SME Business Environment Quality in the Czech Republic. Journal of Competitiveness 8(1), 66-78. doi:10.7441/joc.2016.01.05. Lackó, M. (1998). The hidden economies of Visegrad countries in international comparison: A household electricity approach. In Hungary: Towards a market economy. (pp. 128-152). New York: Cambridge University Press. Lithuanian Department of Statistics. (2016). Informacinių technologijų naudojimas namų ūkiuose [Usage of information technologies in households] Offi cial Statistics Database. LFMI: Facts and Analyses. (2013). Lithuanian Free Market Institute: Ar atsiskaitymų grynaisiais ribojimas sumažins šešėlinę ekonomiką? [Will limitation of cash payments reduce shadow economy?]. Lithuanian International Transfer Advisory Website. (2013). Pinigų pervedimai. lt: Tarptautinių pinigų perlaidų bendrovių palyginimas [Comparison of international money transfer companies], LITAWeb. Mayayise, T., & Olusegun Osunmakinde, I. (2014). E-commerce assurance models and trustworthiness issues: an empirical study. Information Management & Computer Security, 22(1), 76-96. doi:10.1108/IMCS-01-2013-0001. Miciuła, I. (2015). Financial innovations on the currency market as new instruments to risk management. Journal of International Studies, 8(1), 138-149. doi:10.14254/2071-8330.2015/8-1/12. Musa, H. (2010). The Impact of the Single Euro Payments Area (SEPA). Journal of Competitiveness, 2(1), 41-51. OECD Statistics. (2002). Organization for Economic Co-Operation and Development: Measuring the non-observed economy. Putniņš, T. J., & Sauka, A. (2014). Shadow Economy Index for the Baltic countries, 2009–2013. The Centre for Sustainable Business, SSE Riga. Renooy, P., Ivarsson, S., van der Wusten-Gritsai, O., & Meijer, R. (2004). Undeclared Work in an Enlarged Union: an analysis of shadow work-an in-depth study of specific items. Brussels: European Commission. Schneider, F., & Buehn, A. (2013). Estimating the size of the shadow economy: methods, problems and open questions. [CESifo Working Paper Series No. 4448]. Schneider, F., & Kearney, A. T. (2013). The shadow economy in Europe, 2013. Linz: Johannes Kepler Universitat. Schneider, F., Raczkowski, K., & Mróz, B. (2015). Shadow economy and tax evasion in the EU. Journal of Money Laundering Control, 18(1), 34-51. doi:10.1108/JMLC-09-2014-0027. Schneider, F., & Williams, C. C. (2013). The shadow economy. London: The Institute of Economic Affairs. Retrieved November 8, 2016 from https://iea.org.uk/wp-content/uploads/2016/07/IEA%20Shadow%20Economy%20web%20rev%207.6.13.pdf. Siddik, A., Sun, G., Kabiraj, S., Shanmugan, J., & Yanjuan, C. (2016). Impacts of e-banking on performance of banks in a developing economy: empirical evidence from Bangladesh. Journal of Business Economics and Management, 17(6), 1066-1087. doi:10.3846/16111699.2015.1068219. Simionescu, M., Lazányi, K., Sopková, G., Dobeš, K., & Balcerzak, A. P. (2017). Determinants of Economic Growth in V4 Countries and Romania. Journal of Competitiveness, 9(1), 103-116. doi:10.7441/joc.2017.01.07. Simser, J. (2015). Bitcoin and modern alchemy: in code we trust. Journal of Financial Crime, 22(2), 156-169. doi:10.1108/JFC-11-2013-0067. Slozko, O., & Pelo, A. (2014). The Electronic Payments as a Major Factor for Further Economic Development. Economics and Sociology, 7(3), 130-140. doi:10.14254/2071-789X.2014/7-3/10. Sookram, S., Watson, P. K., & Schneider, F. (2009). Characteristics of households in the informal sector of an emerging economy. Applied Economics, 41(27), 3545-3559. doi:10.1080/00036840701493733. Stachova, K., Stacho, Z., & Vicen, V. (2017). Efficient involvement of human resources in innovations through effective communication. Business: Theory and Practice, 18(1), 33-42. doi:10.3846/btp.2017.004. Statista Database. (2016). Statista: Bitcoin price index from November 2014 to November 2016 (in U.S. dollars). Retrieved from https://www.statista.com/. Štitilis, D., & Laurinaitis, M. (2008). Alternative payment systems: Lithuanian outlook. Intellectual Economics, 2(4), 43-51. Teobaldelli, D. (2011). Federalism and the shadow economy. Public Choice, 146(3-4), 269-289. Teobaldelli, D., & Schneider, F. (2012). Beyond the veil of ignorance: The infl uence of direct democracy on the shadow economy. [CESifo Working Paper MO3749]. Munich: University of Munich. Vanini, P. (2012). Virtual Currency Schemes. Frankfurt am Main. The United Nations Economic Commission for Europe: Non-observed economy in national accounts. (2003). Survey of national UNECE. Trebicka, B. (2014). MIMIC model: A tool to estimate the shadow economy. Academic Journal of Interdisciplinary Studies, 3(6), 295. Williams, C. C. (2006). The Hidden Enterprise Culture: Entrepreneurship and the Shadow Economy. Cheltenham: Edward Edgar. Williams, C. C. (2009). Rationales for outsourcing domestic services to off-the-books workers. Journal of Economic Studies, 36(4), 343-354. doi:10.1108/01443580910973565. Williams, C. C. (2010). Out of the shadows: explaining the undeclared economy in Baltic countries. Journal of Baltic Studies, 41(1), 3-22. doi:10.1080/01629770903525282. Williams, C. C., & Nadin, S. J. (2012). Tackling entrepreneurship in the informal economy: evaluating the policy options. Journal of Entrepreneurship and Public Policy, 1(2), 111-124. doi:10.1108/20452101211261408. Williams, C. C., & Nadin, S. (2013). Harnessing the hidden enterprise culture: Supporting the formalisation of off-the-books business start-ups. Journal of Small Business and Enterprise Development, 20(2), 434-447. doi:10.1108/14626001311326815. Williams, C. C., Round, J., & Rodgers, P. (2007). Beyond the formal/informal economy binary hierarchy. International Journal of Social Economics, 34(6), 402-414. doi:10.1108/03068290710751812. Zandi, M., Singh, V., & Irving, J. (2013). The impact of electronic payments on economic growth. Moody’s Analytics: Economic and Consumer Credit Analytics. Żelazny, R. (2015). Model of Information Society Measurement – Framework and Selected Outcomes. Economics and Sociology, 8(3), 245-259. doi:10.14254/2071-789X.2015/8-3/17.
utb.fulltext.sponsorship This work was supported by the Research Council of Lithuania (grant number MIP-15642).
utb.scopus.affiliation Mykolas Romeris University, Lithuania; Tomas Bata University in Zlin, Faculty of Management and Economics, Centre of Applied Economic Research, Czech Republic; Vilnius Gediminas Technical University, Lithuania; LIGS University LLC Honolulu, United States
utb.fulltext.projects MIP-15642
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial 4.0 International