Publikace UTB
Repozitář publikační činnosti UTB

Changes of PVC nanocomposite properties connected with clay content

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Changes of PVC nanocomposite properties connected with clay content en
dc.contributor.author Kalendová, Alena
dc.contributor.author Brázdilová, Lenka
dc.contributor.author Měřínská, Dagmar
dc.contributor.author Mrkvičková, Simona
dc.relation.ispartof Annals of DAAAM and Proceedings of the International DAAAM Symposium
dc.identifier.issn 1726-9679 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-902734-11-2
dc.date.issued 2017
dc.citation.spage 921
dc.citation.epage 925
dc.event.title 28th DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM 2017
dc.event.location Zadar
utb.event.state-en Croatia
utb.event.state-cs Chorvatsko
dc.event.sdate 2017-11-08
dc.event.edate 2017-11-11
dc.type conferenceObject
dc.language.iso en
dc.publisher Danube Adria Association for Automation and Manufacturing, DAAAM
dc.identifier.doi 10.2507/28th.daaam.proceedings.127
dc.relation.uri http://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2017/127.pdf
dc.subject Clay en
dc.subject Conductivity en
dc.subject Nanocomposite en
dc.subject PVC en
dc.description.abstract The polyvinylchloride (PVC) is an extensively used thermoplastic material, therefore the research were focused on this polymer. The aim of this work was to determinate the current development of nanocomposite materials based the polyvinylchloride and the influence of filler loading on their thermal and electrical properties. As nanofillers were used clays derived from montmorillonite (MMT): MMTNa+ and MMT30B. MMTNa+ presented sodium type of montmorillonite and MMT30 is organically modified type of MMT. Both of the clays were intercalated or cointercalated with plasticizer bis(2-ethylhexyl) phthalate (DEHP). As the compounder the Buss KO-kneader was selected. This type of compounder is suitable for processing temperature-sensitive polymers. The properties as thermal and electrical conductivity were evaluated in comparison to the structure. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007747
utb.identifier.obdid 43877675
utb.identifier.scopus 2-s2.0-85040734296
utb.source d-scopus
dc.date.accessioned 2018-02-26T10:20:05Z
dc.date.available 2018-02-26T10:20:05Z
dc.rights Attribution-NonCommercial 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Kalendová, Alena
utb.contributor.internalauthor Brázdilová, Lenka
utb.contributor.internalauthor Měřínská, Dagmar
utb.contributor.internalauthor Mrkvičková, Simona
utb.fulltext.affiliation Alena Kalendova* 1 , Lenka Brazdilova (Sabadasova) 1 , Dagmar Merinska 1 , Simona Mrkvickova 1 1 Tomas Bata University in Zlin, Faculty of Technology, Vavreckova 275, 760 01 Zlin, Czech Republic, email:kalendova@utb.cz
utb.fulltext.dates -
utb.fulltext.references [1] Han Wang; Guiyuan Xie; Minghe Fang; Zhe Ying; Yu Tong; You Zeng, (2015). Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Composites Part B. 79. 444-450. [2] Saad ALG; Sayed WM; Ahmed MGM; Hassan AM. (1999). Preparation and properties of some filled poly(vinyl chloride) compositions. J Appl Polym Sci. 73(13). 2657-70. [3] Moulay S. (2010). Chemical modification of poly(vinyl chloride)- still on the run. ProgPolym Sci. 35(3). 303-31. [4] Giannelis E.P. (1996). Polymer layered silicate nanocomposites. Adv. Mater. 8. 29–35. [5] Alexandre M.; Dubois P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. Rep. 28. 1–63. [6] Fornes T.D.; Yoon P.J.; Hunter D.L.; Keskkula H.; Paul D.R. (2002). Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer. 43. 5915–5933. [7] Stretz H.A.; Paul D.R.; Li R.; Keskkula H.; Cassidy P.E. (2005). Intercalation and exfoliation relationships in melt-processed poly(styrene-co-acrylonitrile)/montmorillonite nanocomposites. Polymer. 46. 2621–2637. [8] Peprnicek T.; Kalendova A.; Pavlova E.; Simonik J.; Duchet J.; Gerard J.F. (2006). Poly(vinyl chloride)-paste/clay nanocomposites: investigation of thermal and morphological characteristics. Polym. Degrad. Stab. 91. 3322–3329. [9] Shah R.K.; Kim D.H.; Paul D.R. (2007). Morphology and properties of nanocomposites formed from ethylene/methacrylic acid copolymers and organoclays. Polymer. 48. 1047–1057. [10] Merinska D.; Kubisova H.; Kalendova A.; Svoboda P.; Hromadkova J. (2012). Processing and properties of polyethylene/montmorillonite nanocomposites. Journal of Thermplastic Composite Materials. 25(1). 115-131. [11] McAtee J.J. (1956). Heterogeneity in montmorillonite. Clay Minerals. 5. 279–288. [12] Paul D.R.; Robeson L.M. (2008). Polymer nanotechnology: nanocomposites. Polymer. 49. 3187–3204. [13] Petersen H.; Jakubowicz I.; Enebro J.; Yarahmadi J. (2015) Organic modification of montmorillonite for application in plasticized PVC nanocomposites. Applied Clay Science. 107. 78–84 [14] Blaha A.; Pavlica. R. Thermal conductivity measurement by non-stationary method. Mereni tepelne vodivosti nestacionarni metodou. (2001). CHISA.15. - 18. října 2001. Srni. Sumava. Czech Republic. Czech Society of Chemical Engineering . ISBN 80-86059-32-4.
utb.fulltext.sponsorship This project was supported by internal grant of TBU in Zlin RVOE. Next I wish to thanks Mr. Antonin Blaha for the help with the thermal conductivity measurement.
utb.scopus.affiliation Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, Zlin, Czech Republic
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial 4.0 International