Publikace UTB
Repozitář publikační činnosti UTB

The effect of irradiation on mechanical and thermal properties of selected types of polymers

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title The effect of irradiation on mechanical and thermal properties of selected types of polymers en
dc.contributor.author Maňas, David
dc.contributor.author Ovsík, Martin
dc.contributor.author Mizera, Aleš
dc.contributor.author Maňas, Miroslav
dc.contributor.author Hýlová, Lenka
dc.contributor.author Bednařík, Martin
dc.contributor.author Staněk, Michal
dc.relation.ispartof Polymers
dc.identifier.issn 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 10
utb.relation.issue 2
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/polym10020158
dc.relation.uri http://www.mdpi.com/2073-4360/10/2/158/htm
dc.subject crosslinking en
dc.subject beta rays en
dc.subject micro-indentation en
dc.subject TMA (thermo-mechanical analysis) en
dc.subject X-ray en
dc.subject gel content en
dc.description.abstract This article deals with the influence of electron-beam radiation on the micro-mechanical, thermo-mechanical, and structural properties of selected polymers. In the search for the desired improvement of polymers, it is possible to use, inter alia, one particular possible modification-Namely, crosslinking-Which is a process duringwhichmacromolecular chains start to connect to each other and, thus, create the spatial network in the structure. In the course of the treatment of the ionizing radiation, two actions can occur: crosslinking and scission of macromolecules, or degradation. Both these processes run in parallel. Using the crosslinking technology, standard and technical polymers can acquire the more "expensive" high-tech polymeric material properties and, thus, replace these materials in many applications. The polymers that were tested were selected from across the whole spectra of thermoplastics, ranging from commodity polymers, technical polymers, as well as high-performance polymers. These polymers were irradiated by different doses of beta radiation (33, 66, 99, 132, 165, and 198 kGy). The micro-mechanical and thermo-mechanical properties of these polymers were measured. When considering the results, it is obvious that irradiation acts on each polymer differently but, always when the optimal dose was found, the mechanical properties increased by up to 36%. The changes of micro-mechanical and thermo-mechanical properties were confirmed by structural measurement when the change of the micro-hardness and modulus corresponded to the crystalline phase change as determined by X-ray and gel content. © 2018 by the authors. en
utb.faculty Faculty of Technology
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007754
utb.identifier.obdid 43878441
utb.identifier.scopus 2-s2.0-85041716387
utb.identifier.wok 000427542900053
utb.source j-scopus
dc.date.accessioned 2018-02-26T10:20:06Z
dc.date.available 2018-02-26T10:20:06Z
dc.description.sponsorship CZ.1.05/2.1.00/19.0376; National Landcare Programme; MEYS, Ministry of Education, Youth and Science; ERDF, European Regional Development Fund; IGA/FT/2018/012
dc.description.sponsorship European Regional Development Fund under the project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376]; Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program project [LO1303 (MSMT-7778/2014)]; Internal Grant Agency of TBU in Zlin [IGA/FT/2018/012]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou CEBIA-Tech
utb.contributor.internalauthor Maňas, David
utb.contributor.internalauthor Ovsík, Martin
utb.contributor.internalauthor Mizera, Aleš
utb.contributor.internalauthor Maňas, Miroslav
utb.contributor.internalauthor Hýlová, Lenka
utb.contributor.internalauthor Bednařík, Martin
utb.contributor.internalauthor Staněk, Michal
utb.fulltext.affiliation David Manas 1,2,†, Martin Ovsik 1,2,* ID , Ales Mizera 2 ID , Miroslav Manas 2, Lenka Hylova 1,2, Martin Bednarik 1 ID and Michal Stanek 1,2 1 Tomas Bata University in Zlin, Faculty of Technology, Vavreckova 275, 760 01 Zlín, Czech Republic; dmanas@utb.cz (D.M.); hylova@utb.cz (L.H.); mbednarik@utb.cz (M.B.); stanek@utb.cz (M.S.) 2 Tomas Bata University in Zlin, Faculty of Applied Informatics, CEBIA-Tech, Nad Stranemi 4511, 760 05 Zlin, Czech Republic; mizera@utb.cz (A.M.); manas@utb.cz (M.M.) * Correspondence: ovsik@utb.cz; Tel.: +420-576-035-100 † This article is dedicated, in memoriam, to Assoc. Prof. David Manas.
utb.fulltext.dates Received: 4 December 2017; Accepted: 5 February 2018; Published: 7 February 2018
utb.fulltext.references 1. Khonakdar, H.A.; Jafari, S.H.; Wagenkecht, U.; Jehnichen, D. Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene. Radiat. Phys. Chem. 2006, 75, 78–86. [CrossRef] 2. Dadbin, S.; Frounchi, M.; Saeid, M.H.; Gangi, F. Molecular structure and physical properties of E-beam crosslinked low-density polyethylene for wire and cable insulation applications. J. Appl. Polym. Sci. 2002, 86, 1959–1969. [CrossRef] 3. Tamboli, S.M.; Mhaske, S.T.; Kale, D.D. Crosslinked polyethylene. Indian J. Chem. Technol. 2004, 11, 853–864. 4. Koike, Y.; Cakmak, M. Role of molten fraction on the structural evolution in stretching and cooling of crosslinked low-density polyethylene: Real-time mechano-optical measurements. J. Polym. Sci. B Polym. Phys. 2005, 43, 1825–1841. [CrossRef] 5. Nilsson, S.; Hjertberg, T.; Smeberg, A. Structural effect on thermal properties and morphology in XLPE. Eur. Polym. J. 2010, 46, 1759–1769. [CrossRef] 6. Mehrjerdi, A.D.; Zarrabi, B.A.; Cho, S.W.; Skrifvars, M. Mechanical and Thermo-Physical Properties of High-Density Polyethylene Modified with Talc. J. Appl. Polym. Sci. 2013. [CrossRef] 7. Whelton, A.J.; Dietrich, A.M. Critical considerations for the accelerated ageing of high-density polyethylene potable water materials. Polym. Degrad. Stab. 2009, 94, 1163–1175. [CrossRef] 8. Ahmad, S.R.; Xue, C.; Young, R.J. The mechanisms of reinforcement of polypropylene by graphene nanoplateles. Mater. Sci. Eng. B 2017, 216, 2–9. [CrossRef] 9. Lin, J.H.; Huang, C.L.; Liu, C.F.; Chen, C.K.; Lin, Z.I.; Lou, C.W. Polypropylene/Short Glass Fibers Composites: Effects of Coupling Agents on Mechanical Properties, Thermal Behaviors, and Morphology. Materials 2015, 8, 8279–8291. [CrossRef] [PubMed] 10. Sombatsompop, N.; Chaiwattanpipat, W. Temperature profiles of glass fibre-filled polypropylene melts in injection moulding. Polym. Test. 2000, 19, 713–724. [CrossRef] 11. Köpplmayr, T.; Milosavljevic, I.; Aigner, M.; Hasslacher, R.; Plank, B.; Salaberger, D.; Miethlinger, J. Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene. Polym. Test. 2013, 32, 535–544. [CrossRef] 12. Metanawin, T.; Jamjumrus, A.; Metanawin, S. Morphology, Mechanical and Thermal Properties of PBT-TiO2 Polymer Nanocomposite. MATEC Web Conf. 2015, 30. [CrossRef] 13. Ovsik, M.; Hylova, L.; Manas, D.; Manas, M.; Stanek, M. Micro-Hardness of PBT Influenced by Beta Radiation. MATEC Web Conf. 2016, 76. [CrossRef] 14. Manas, D.; Manas, M.; Ovsik, M.; Stanek, M.; Chvatalova, L.; Stoklasek, P.; Hylova, L. Micro-Hardness of Surface Layer of Irradiated Polybutene Terephthalate (PBT). MATEC Web Conf. 2016, 76. [CrossRef] 15. Baochun, G.; Quanliang, Z.; Yanda, L.; Mingliang, D.; Mingxian, L.; Demin, J. Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim. Acta 2009, 484, 48–56. 16. Dadbin, S.; Frounchi, M.; Goudarzi, D. Electron beam induced crosslinking of nylon 6 with and without the presence of TAC. Polym. Degrad. Stab. 2005, 89, 436–441. [CrossRef] 17. Gehring, J.; Zyball, A. Radiation Crosslinking of Polymers-status, Current Issues, Trends and Challenges. Radiat. Phys. Chem. 1995, 46, 4–6. [CrossRef] 18. Porubska, M.; Janigova, I.; Jomova, K.; Chodak, I. The Effect of Electron Beam Irradiation on Properties of Virgin and Glass Fiber-reinforced Polyamide 6. Radiat. Phys. Chem. 2014, 102, 159–166. [CrossRef] 19. Uddin, A.j.; Gotoh, Y.; Ohkoshi, Y.; Nishino, T.; Endo, R. Crystal Modulus of a New Semiaromatic Polyamide 9-T. Polym. Eng. Sci. 2012, 52, 331–337. [CrossRef] 20. Makuuchi, K.; Cheng, S. Radiation Processing of Polymer Materials and Its Industrial Applications; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 978-0-470-58769-0. 21. Chapiro, A. Radiation Chemistry of Polymeric Systems; Interscience Publishers: New York, NY, USA; John Wiley and Sons: New York, NY, USA, 1962; p. 503. 22. Miller, A.A.; Lawton, E.J.; Balwit, J.S. Effect of chemical structure of vinyl polymers on crosslinking and degradation by ionizing radiation. J. Polym. Sci. 1954, 14, 503–504. [CrossRef] 23. Makhlis, F.A. Radiation Physics and Chemistry of Polymers; Halsted Press Book: New York, NY, USA; Jerusalem, Israel, 1975; ISBN 0-470-56537-3. 24. Drobný, J.G. Radiation Technology for Polymers; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-1-4200-9404-6. 25. Radiation Crosslinking. Available online: http://en.bgs.eu/wp-content/uploads/2017/02/BGS_radiation_crosslinking_en-1.pdf (accessed on 10 January 2018).
utb.fulltext.sponsorship Our great thanks belong to our colleague and co-worker, David Manas, for his long-lasting cooperation and supervision of numerous academic diploma works and theses. David was a promising—And highly regarded—Pedagogue and scientist, and a leading person in the research area presented in this article. He passed away unexpectedly in mid-September 2017, at the age of only 42 years of life. We were honored to work with him. May his soul rest in peace. This work was supported by the European Regional Development Fund under the project CEBIA-Tech Instrumentation No. CZ.1.05/2.1.00/19.0376 and by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program project No. LO1303 (MSMT-7778/2014). Moreover, it was supported by the Internal Grant Agency of TBU in Zlin: No. IGA/FT/2018/012.
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Technology, Vavreckova 275, Zlín, Czech Republic; Tomas Bata University in Zlin, Faculty of Applied Informatics, CEBIA-Tech, Nad Stranemi 4511, Zlin, Czech Republic
utb.fulltext.projects CZ.1.05/2.1.00/19.0376
utb.fulltext.projects LO1303 (MSMT-7778/2014)
utb.fulltext.projects IGA/FT/2018/012
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International