Kontaktujte nás | Jazyk: čeština English
dc.title | Preparation and characterization of expanded g-C3N4 via rapid microwave-assisted synthesis | en |
dc.contributor.author | Masař, Milan | |
dc.contributor.author | Urbánek, Pavel | |
dc.contributor.author | Škoda, David | |
dc.contributor.author | Hanulíková, Barbora | |
dc.contributor.author | Kožáková, Zuzana | |
dc.contributor.author | Machovský, Michal | |
dc.contributor.author | Münster, Lukáš | |
dc.contributor.author | Kuřitka, Ivo | |
dc.relation.ispartof | Diamond and Related Materials | |
dc.identifier.issn | 0925-9635 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 83 | |
dc.citation.spage | 109 | |
dc.citation.epage | 117 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.identifier.doi | 10.1016/j.diamond.2018.01.028 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0925963517305319 | |
dc.subject | Carbon nitride | en |
dc.subject | Synthesis | en |
dc.subject | Morphology | en |
dc.subject | Optoelectronic properties | en |
dc.subject | Catalytic processes | en |
dc.description.abstract | Microwave assisted heating was successfully employed in significantly accelerated preparation of expanded g-C3N4 via thermal condensation of urea. Comparing to typical synthesis route, rapid microwave assisted heating enables not only shorten synthesis time from hours to few minutes but obtain reasonable yield of the product also. Use of ceramic kiln “hotpot” with intern covered with absorbing layer plays the key role in transformation of the microwave energy into heat. Heat energy in form of radiation from the glowing inner layer surface is focused into the internal volume of the kiln resulting in extremely fast temperature increase. Thus, microwave non-absorbing starting material is extremely fast heated. The effects of reaction conditions on the structural, morphological, optical and photocatalytic properties of prepared g-C3N4 were investigated in detail. Having similar specific surface area but much larger particles than its conventionally prepared analogue, the microwave prepared material can be classified as expanded g-C3N4. Moreover, by simply changing the reaction time, photoluminescence emission of the material can be continuously tuned covering the blue to green light region of visible light. The photocatalytic degradation of Methyl Violet 2B reveal that the adsorption capacity of samples increases with processing time while the rate constant slightly decreases. It can be ascribed to the expansion of the internal surface which results in its worse availability to the diffusion transport of the dye to active sites. It also impedes photodegradation products removal. The synthesis technique described here could be considered applicable to starting materials, which cannot be sufficiently heated by microwave absorption directly. © 2018 Elsevier B.V. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007779 | |
utb.identifier.obdid | 43879129 | |
utb.identifier.scopus | 2-s2.0-85042122006 | |
utb.identifier.wok | 000430767200016 | |
utb.identifier.coden | DRMTE | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-04-23T15:01:43Z | |
dc.date.available | 2018-04-23T15:01:43Z | |
dc.description.sponsorship | ERDF, European Regional Development Fund; LO1504, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I [LO1504]; Operational Program Research and Development for Innovations - European Regional Development Fund (ERDF); national budget of the Czech Republic, within the framework of the project CPS - strengthening research capacity [CZ.1.05/2.1.00/19.0409]; Internal Grant Agency of Tomas Bata University in Zlin [IGA/CPS/2016/006, IGA/CPS/2017/007] | |
utb.contributor.internalauthor | Masař, Milan | |
utb.contributor.internalauthor | Urbánek, Pavel | |
utb.contributor.internalauthor | Škoda, David | |
utb.contributor.internalauthor | Hanulíková, Barbora | |
utb.contributor.internalauthor | Kožáková, Zuzana | |
utb.contributor.internalauthor | Machovský, Michal | |
utb.contributor.internalauthor | Münster, Lukáš | |
utb.contributor.internalauthor | Kuřitka, Ivo | |
utb.fulltext.affiliation | Milan Masar, Pavel Urbanek, David Skoda, Barbora Hanulikova, Zuzana Kozakova, Michal Machovsky, Lukas Munster, Ivo Kuritka⁎ Centre of Polymer Systems, tr. T. Bati 5678, 760 01 Zlin, Czech Republic ⁎ Corresponding author. E-mail address: kuritka@utb.cz (I. Kuritka) | |
utb.fulltext.dates | Received 2 October 2017; Received in revised form 18 January 2018; Accepted 30 January 2018; Available online 01 February 2018 | |
utb.fulltext.references | [1] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, K. Domen JM Carlsson, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8 (2009) 76–80. [2] G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties, J. Photochem. Photobiol., C 20 (2014) 33–50. [3] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. Mueller, R. Schloegl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18 (2008) 4893–4908. [4] Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed. 51 (2012) 68–89. [5] Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis, Energy Environ. Sci. 5 (2012) 6717–6731. [6] S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride, Adv. Mater. 27 (2015) 2150–2176. [7] S. Cao, J. Yu, g-C3N4-based photocatalysts for hydrogen generation, J. Phys. Chem. Lett. 5 (2014) 2101–2107. [8] A. Lazauskas, J. Baltrusaitis, L. Puodziukynas, M. Andrulevicius, G. Bagdziunas, D. Volyniuk, S. Meskinis, G. Niaura, T. Tamulevicius, V. Jankauskaite, Characterization of urea derived polymeric carbon nitride and resultant thermally vacuum deposited amorphous thin films: structural, chemical and photophysical properties, Carbon 107 (2016) 415–425. [9] T. Komatsu, Attempted chemical synthesis of graphite-like carbon nitride, J. Mater. Chem. 11 (2001) 799–801. [10] R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Visible-light-driven CO 2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts, Angew. Chem. Int. Ed. 54 (2015) 2406–2409. [11] G. Zhang, Z. Lan, X. Wang, Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting, Chem. Sci. 8 (2017) 5261–5274. [12] H. Ma, Z. Shi, S. Li, N. Liu, Large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability via a convenient microwave treatment, Appl. Surf. Sci. 379 (2016) 309–315. [13] S. Patnaik, S. Martha, K.M. Parida, An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production, RSC Adv. 6 (2016) 46929–46951. [14] S. Yin, J. Han, T. Zhou, R. Xu, Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications, Cat. Sci. Technol. 5 (2015) 5048–5061. [15] X. Dong, F. Cheng, Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications, J. Mater. Chem. A 3 (2015) 23642–23652. [16] G. Zhang, Z. Lan, X. Wang, Conjugated polymers: catalysts for photocatalytic hydrogen evolution, Angew. Chem. Int. Ed. 55 (2016) 15712–15727. [17] X. Bai, J. Li, C. Cao, S. Hussain, Solvothermal synthesis of the special shape (deformable) hollow g-C3N4 nanospheres, Mater. Lett. 65 (2011) 1101–1104. [18] X. Wang, W. Hu S Wang, J. Cai, L. Zhang, L. Dong, L. Zhao, Y. He, Synthesis and photocatalytic activity of SiO 2 /g-C3N4 composite photocatalyst, Mater. Lett. 115 (2014) 53–56. [19] J. Zhang, G. Zhang, X. Chen, S. Lin, L. Moehlmann, G. Dolega, G. Lipner, M. Antonietti, S. Blechert, X. Wang, Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light, Angew. Chem. Int. Ed. 51 (2012) 3183–3187. [20] J. Sun, J. Zhang, M. Zhang, X. Fu M Antonietti, X. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles, Nat. Commun. 3 (2012) 1139. [21] G. Zhang, G. Li, Z. Lan, L. Lin, A. Savateev, T. Heil, S. Zafeiratos, X. Wang, M. Antonietti, Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity, Angew. Chem. Int. Ed. 56 (2017) 13445–13449. [22] E. Kroke, M. Schwarz, Novel group 14 nitrides, Coord. Chem. Rev. 248 (2004) 493–532. [23] Y.L. Gu, L.Y. Chen, L. Shi, J.H. Ma, Z.H. Yang, Y.T. Qian, Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide, Carbon 41 (2003) 2674–2676. [24] J.L. Zimmerman, R. Williams, V.N. Khabashesku, J.L. Margrave, Synthesis of spherical carbon nitride nanostructures, Nano Lett. 1 (2001) 731–734. [25] M. Xie, W. Wei, Y. Xu Z Jiang, J. Xie, Carbon nitride nanowires/nanofibers: a novel template-free synthesis from a cyanuric chloride-melamine precursor towards enhanced adsorption and visible-light photocatalytic performance, Ceram. Int. 42 (2016) 4158–4170. [26] K. Maeda, X. Wang, D. Lu Y Nishihara, M. Antonietti, K. Domen, Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light, J. Phys. Chem. C 113 (2009) 4940–4947. [27] H. Ji, X. Hu F Chang, W. Qin, J. Shen, Photocatalytic degradation of 2,4,6-tri-chlorophenol over g-C3N4 under visible light irradiation, Chem. Eng. J. 218 (2013) 183–190. [28] X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui, G. Zou, Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine, Appl. Phys. Mater. Sci. Process. 94 (2009) 387–392. [29] L. Cao, R. Wang, D. Wang, Synthesis and characterization of sulfur self-doped g-C3N4 with efficient visible-light photocatalytic activity, Mater. Lett. 149 (2015) 50–53. [30] F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, J. Mater. Chem. 21 (2011) 15171–15174. [31] Y. Zhang, G. Wu J Liu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nano 4 (2012) 5300–5303. [32] I. Bilecka, M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis, Nano 2 (2010) 1358–1374. [33] F. Wiesbrock, R. Hoogenboom, U. Schubert, Microwave-assisted polymer synthesis: state-of-the-art and future perspectives, Macromol. Rapid Commun. 25 (2004) 1739–1764. [34] F. Chemat, M. Poux, Microwave assisted pyrolysis of urea supported on graphite under solvent-free conditions, Tetrahedron Lett. 42 (2001) 3693–3695. [35] P. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, J. Brauer, Thermal decomposition (pyrolysis) of urea in an open reaction vessel, Thermochim. Acta 424 (2004) 131–142. [36] Y. Yu, J. Wang, Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity, Ceram. Int. 42 (2016) 4063–4071. [37] Y. Yu, Q. Zhou, J. Wang, The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission, Chem. Commun. 52 (2016) 3396–3399. [38] Y. Yuan, L. Yin, L. Gu S Cao, G. Xu, P. Du, H. Chai, Y. Liao, C. Xue, Microwave-assisted heating synthesis: a general and rapid strategy for large-scale production of highly crystalline g-C3N4 with enhanced photocatalytic H-2 production, Green Chem. 16 (2014) 4663–4668. [39] M. Yang, K.G. Lee, S.J. Lee, S.B. Lee, Y. Han, B.G. Choi, Three-dimensional expanded graphene-metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors, ACS Appl. Mater. Interfaces 7 (2015) 22364–22371. [40] CL Beom, SL Beom, SL Dai, JK Sang, Method for manufacturing graphene nanoplate, involves drying ferric chloride after adding graphite into nitro methane to obtain dry compound that is heated and expanded by utilizing microwave to obtain nanoplate. [41] C. Marcos, I. Rodriguez, Expansibility of vermiculites irradiated with microwaves, Appl. Clay Sci. 51 (2011) 33–37. [42] S. Bayan, N. Gogurla, A. Midya, S.K. Ray, White light emission characteristics of two dimensional graphitic carbon nitride and ZnO nanorod hybrid heterojunctions, Carbon 108 (2016) 335–342. [43] J. Knapp, Pottery making illustrated, J. Am. Ceram. Soc. 13 (2010) 8–9. [44] B. Zhu, P. Xia, W. Ho, J. Yu, Isoelectric point and adsorption activity of porous g-C3N4, Appl. Surf. Sci. 344 (2015) 188–195. [45] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25 (2009) 10397–10401. [46] J Wen, J Xie, X Chen, X Li. A review on g-C3N4-based photocatalysts, Appl. Surf. Sci. [47] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Pure Appl. Chem. 87 (2015) 1051–1069. | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504). This article was written with the support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of the Czech Republic, within the framework of the project CPS - strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409). This work was supported by Internal Grant Agency of Tomas Bata University in Zlin (within two projects reg. number IGA/CPS/2016/006 and reg. number IGA/CPS/2017/007). | |
utb.wos.affiliation | [Masar, Milan; Urbanek, Pavel; Skoda, David; Hanulikova, Barbora; Kozakova, Zuzana; Machovsky, Michal; Munster, Lukas; Kuritka, Ivo] Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Centre of Polymer Systems, tr. T. Bati 5678, Zlin, Czech Republic | |
utb.fulltext.projects | LO1504 | |
utb.fulltext.projects | CZ.1.05/2.1.00/19.0409 | |
utb.fulltext.projects | IGA/CPS/2016/006 | |
utb.fulltext.projects | IGA/CPS/2017/007 |