Kontaktujte nás | Jazyk: čeština English
dc.title | Changes of physical properties of PLA-based blends during early stage of biodegradation in compost | en |
dc.contributor.author | Sedničková, Michaela | |
dc.contributor.author | Pekařová, Silvie | |
dc.contributor.author | Kucharczyk, Pavel | |
dc.contributor.author | Bočkaj, Ján | |
dc.contributor.author | Janigová, Ivica | |
dc.contributor.author | Kleinová, Angela | |
dc.contributor.author | Jochec-Mošková, Daniela | |
dc.contributor.author | Omaníková, Leona | |
dc.contributor.author | Perďochová, Dagmar | |
dc.contributor.author | Koutný, Marek | |
dc.contributor.author | Sedlařík, Vladimír | |
dc.contributor.author | Alexy, Pavol | |
dc.contributor.author | Chodák, Ivan | |
dc.relation.ispartof | International Journal of Biological Macromolecules | |
dc.identifier.issn | 0141-8130 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 113 | |
dc.citation.spage | 434 | |
dc.citation.epage | 442 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.identifier.doi | 10.1016/j.ijbiomac.2018.02.078 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0141813017333561 | |
dc.subject | Biodegradation | en |
dc.subject | Chemical changes | en |
dc.subject | Composting | en |
dc.subject | Crystallinity | en |
dc.subject | Molecular weight | en |
dc.description.abstract | Three biodegradable plastics materials, namely pure poly(L-lactide) (PLA), PLA with plasticizer triacetine (TAC) and the mixture PLA/polyhydroxybutyrate (PHB) and TAC were investigated concerning changes of physical properties due to biodegradation in compost at 58 °C up to 16 days. With rising time of degradation in compost, both number and weight molecular masses were decreasing progressively, but only marginal change of the polydispersity index was observed which indicates that biodegradation is not random process. FTIR spectroscopy revealed that in spite of the extensive decrease of molecular weight, no substantial change in chemical composition was found. The most significant modification of the spectra consisted in an appearing of the broad band in region 3100–3300 cm−1, which was assigned to a formation of biofilm on the sample surfaces. This effect appeared for all three materials, however, it was much more pronounced for samples containing also triacetine. Measurement of changes in crystalline portion confirmed that amorphous phase degrades substantially faster compared to crystalline part. The plasticizer triacetine is disappearing also rather fast from the sample resulting besides other effect also in a temporary increase of Tg, which at the beginning grows almost to the value typical for PLA without plasticizer but later the Tg is decreasing due to substantial changes in molecular weight. Generally during composting, the samples keep shape for up to 8 days, after that time the material disintegrates to rough powder. © 2018 Elsevier B.V. | en |
utb.faculty | Faculty of Technology | |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007786 | |
utb.identifier.obdid | 43878908 | |
utb.identifier.scopus | 2-s2.0-85042689077 | |
utb.identifier.wok | 000432503100051 | |
utb.identifier.pubmed | 29454946 | |
utb.identifier.coden | IJBMD | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-04-23T15:01:44Z | |
dc.date.available | 2018-04-23T15:01:44Z | |
dc.description.sponsorship | 1/0122/15, SAV, Slovenská Akadémia Vied; APVV 0301-14, APVV, Agentúra na Podporu Výskumu a Vývoja; APVV 0741-15, APVV, Agentúra na Podporu Výskumu a Vývoja; VEGA 2/0108/14, SAV, Slovenská Akadémia Vied | |
dc.description.sponsorship | Slovak Research and Development [APVV 0301-14, APVV 0741-15]; Slovak Republic Government Education Department; Slovak Academy of Sciences VEGA [2/0108/14, 1/0122/15] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Pekařová, Silvie | |
utb.contributor.internalauthor | Kucharczyk, Pavel | |
utb.contributor.internalauthor | Koutný, Marek | |
utb.contributor.internalauthor | Sedlařík, Vladimír | |
utb.fulltext.affiliation | Michaela Sedničková a , Silvie Pekařová b , Pavel Kucharczyk c , Ján Bočkaj d , Ivica Janigová a , Angela Kleinová a , Daniela Jochec-Mošková a , Leona Omaníková d , Dagmar Perďochová d , Marek Koutný b , Vladimír Sedlařík c , Pavol Alexy d , Ivan Chodák a, ⁎ a Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia b Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic c Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic d Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia ⁎ Corresponding author. E-mail address: Ivan.Chodak@savba.sk (I. Chodák). | |
utb.fulltext.dates | Received 29 September 2017 Received in revised form 8 February 2018 Accepted 10 February 2018 Available online 15 February 2018 | |
utb.fulltext.references | [1] H. Tsuji, Polylactides, in: Y. Doi, A. Steinbüchel (Eds.), Biopolymers, Vol. 4: Polyesters III, Applications and Commercial Products, Wiley-VCH, Weinheim, 2002. [2] J. Asrar, K.J. Gruys, Biodegradable polymer (Biopol®), in: Y. Doi, A. Steinbüchel (Eds.), Biopolymers, Vol. 4: Polyesters III, Applications and Commercial Products, Wiley-VCH, Weinheim, 2002. [3] I. Chodák, Polyhydroxyalkanoates: properties and modification for high volume applications, in: G. Scott (Ed.), Degradable Polymers: Principles and Applications, Kluwer Acad. Publ, Dordrecht/Boston/London 2002, pp. 295–319. [4] I. Armentano, E. Fortunati, N. Burgos, F. Dominici, F. Luzi, S. Fiori, A. Jiménez, K. Yoon, J. Ahn, S. Kang, J.M. Kenny, Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems, Express Polym Lett 9 (7) (2015) 583–596. [5] I. Armentano, E. Fortunati, N. Burgos, F. Dominici, F. Luzi, S. Fiori, A. Jiménez, K. Yoon, J. Ahn, S. Kang, J.M. Kenny, Bio-based PLA_PHB plasticized blend films: processing and structural characterization, LWT Food Sci. Technol. 64 (2) (2015) 980–988. [6] J.W. Park, Y. Doi, T. Iwata, Biomacromolecules 5 (2004) 1557–1566. [7] I. Ohkoshi, H. Abe, Y. Doi, Miscibility and solid-state structures for blends of poly [(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate], Polymer 41 (2000) 5985–5992. [8] N. Koyama, Y. Doi, Miscibility of binary blends of poly [(R)-3-hydroxybutyric acid] and poly [(S)-lactic acid], Polymer 38 (1997) 1589–1593. [9] M. Abdelwahab, A. Flynn, B.-S. Chiou, S. Imam, W. Orts, E. Chiellini, Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends, Polym. Degrad. Stab. 97 (9) (2012) 1822–1828. [10] R. Babu, T. Woods, Polymer blends with improved mechanical properties, Soc. Plast. Eng. Plast. Res. Online (2011) 1–2. [11] T. Gerard, Polylactide/poly(hydroxybutyrate-co-hydroxyvalerate) blends: morphology and mechanical properties, Express Polym Lett 8 (8) (2014) 609–617. [12] M.P. Arrieta, J. López, E. Rayón, A. Jiménez, Disintegrability under composting conditions of plasticized PLA–PHB blends, Polym. Degrad. Stab. 108 (2014) 307–318. [13] S. Ansari, T. Fatma, Polyhydroxybutyrate — a biodegradable plastic and its various formulations, Int. J. Innov. Res. Sci. Eng. Technol. 3 (2) (2014) 9494–9499. [14] M.P. Arrieta, M.D. Samper, J. López, A. Jiménez, Combined effect of poly (hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging, J. Polym. Environ. 22 (4) (2014) 460–470. [15] V.M. Ghorpade, A. Gennadios, M.A. Hanna, Laboratory composting of extruded poly (lactic acid) sheets, Bioresour. Technol. 76 (1) (2001) 57–61. [16] T. Leejarkpai, U. Suwanmanee, Y. Rudeekit, T. Mungcharoen, Biodegradable kinetics of plastics under controlled composting conditions, Waste Manag. 31 (2011) 1153–1161. [17] O. Cadar, M. Paul, C. Roman, M. Miclean, C. Majdik, Biodegradation behaviour of poly (lactic acid) and (lactic acid-ethylene glycol-malonic or succinic acid) copolymers under controlled composting conditions in a laboratory test system, Polym. Degrad. Stab. 97 (3) (2012) 354–357. [18] M. Mochizuki, Properties and application of aliphatic polyester products, in: Y. Doi, A. Steinbüchel (Eds.), Biopolymers, Vol. 4: Polyesters III, Applications and Commercial Products, Wiley-VCH, Weinheim 2002, p. 20. [19] R.-J. Müller, Biodegradability of polymers: regulations and methods for testing, in: A. Steinbüchel (Ed.), Biopolymers, Vol. 10: General Aspects and Special Applications, Wiley-VCH, Weinheim 2003, pp. 366–388. [20] J. Mergaert, A. Webb, C. Anderson, A. Wouters, J. Swings, Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils, Appl. Environ. Microbiol. 59 (1993) 3233–3238. [21] P. Gruber, M. O'Brien, Polylactides “NatureWorksTM PLA”, in: Y. Doi, A. Steinbüchel (Eds.), Biopolymers, Vol. 4: Polyesters III, Applications and Commercial Products, Wiley-VCH, Weinheim 2002, p. 248. [22] McDonald RT, McCarthy S, Gross RA (1996) Enzymatic degradability of poly (lactide): effects of chain stereochemistry and material crystallinity. Macromolecules 29:7356–7361 1996. [23] H. Cai, V. Dave, R.A. Gross, S.P. McCarthy, Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid), J. Polym. Sci. B Polym. Phys. 34 (1996) 2701–2708. [24] T. Iwata, Y. Doi, Morphology and enzymatic degradation of poly( L -lactic acid) single crystals, Macromolecules 31 (1998) 2461–2467. [25] H. Tsuji, S. Miyauchi, Poly( L -lactide) 6. Effects of crystallinity on enzymatic hydrolysis of poly( L -lactide) without free amorphous region, Polym. Degrad. Stab. 71 (2001) 415–424. [26] M.P. Arrieta, M. Castro-López Mdel, E. Rayón, L.F. Barral-Losada, J.M. López-Vilariño, J. López, M.V. González-Rodríguez, J. Agric. Food Chem. 62 (2014) 10170–10180. [27] J.T. Yeh, C.Y. Huang, W.L. Chai, K.N.J. Chen, Platicied properties of poly(lactic acid) and triacetine blends, Appl. Polym. Sci. 112 (2009) 2757–2763. [28] M. Kovaľaková, D. Olčák, V. Hronský, P. Vrábel, O. Fričová, I. Chodák, P. Alexy, G. Sučik, Morphology and molecular mobility of plasticized polylactic acid studied using solid-state 13 C- and 1 H-NMR spectroscopy, J. Appl. Polym. Sci. 133 (2016) 188–198. [29] N. Ljungberg, B.J.J. Wesslén, Appl. Polym. Sci. 86 (2002) 1227–1234. [30] I. Armentano, E. Fortunati, N. Burgos, F. Dominici, F. Luzi, S. Fiori, A. Jiménez, K. Yoon, J. Ahn, S. Kang, J.M. Kenny, Express Polym Lett 9 (2015) 586–596. [31] Y.-X. Weng, Y.-J. Jin, Q.-Y. Meng, L. Wang, M. Zhang, Y.-Z. Wang, Biodegradation behavior of poly (butylene adipate-coterephthalate) (PBAT), poly (lactic acid) (PLA), and their blend under soil conditions, Polym. Test. 32 (2013) 918–926. [32] J.-T. Yeh, Ch.-H. Tsou, Ch.-Y. Huang, K.-N. Chen, Ch.-S. Wu, W.-L. Chai, Compatible and crystallization properties of poly(lacticacid)/poly(butylene adipate-co-terephthalate) blends, J. Appl. Polym. Sci. 116 (2010) 680–687. [33] E. Zagar, A. Krzan, SEC-MALS characterization of microbial polyhydroxyalkankoates, Biomacromolecules 5 (2004) 628–636. [34] L. Husárová, S. Pekařová, P. Stloukal, P. Kucharzcyk, V. Verney, S. Commereuc, A. Ramone, M. Koutny, Identification of important abiotic and biotic factors in the biodegradation of poly( L -lactic acid), Int. J. Biol. Macromol. 71 (2014) 155–162. [35] P. Stloukal, G. Jandikova, M. Koutny, V. Sedlařík, Carbodiimide additive to control hydrolytic stability and biodegradability of PLA, Polym. Test. 54 (2016) 19–28. [36] J.P.J. Flory, Principles of Polymer Chemistry, Cornell Univ. Press, 1953. [37] M. Basedow, K.H. Ebert, H.E. Ederer, Kinetic studies on the acid hydrolysis of dextrane, Macromolecules 11 (1978) 774. [38] C. Abrusci, J. Pablos, T. Corrales, J. López-Marín, I. Marín, F. Catalina, Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives, Int. Biodeter. Biodegr. 65 (3) (2011) 451–459. [39] NITE; Chemical Risk Information Platform (CHRIP). Biodegradation and Bioconcentration. Tokyo, Japan: Natl Inst Tech Eval. Available from: http://www.safe.nite.go.jp/english/db.html, as of June 2, 2015. | |
utb.fulltext.sponsorship | This work was supported by the Slovak Research and Development projects APVV 0301-14, APVV 0741-15 and by projects of the Slovak Republic Government Education Department and the Slovak Academy of Sciences VEGA 2/0108/14 and 1/0122/15. | |
utb.scopus.affiliation | Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia; Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín, Czech Republic; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, Zlín, Czech Republic; Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, Slovakia | |
utb.fulltext.projects | APVV 0301-14 | |
utb.fulltext.projects | APVV 0741-15 | |
utb.fulltext.projects | VEGA 2/0108/14 | |
utb.fulltext.projects | VEGA 1/0122/15 |