Publikace UTB
Repozitář publikační činnosti UTB

Elliott waves classification by means of neural and pseudo neural networks

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Elliott waves classification by means of neural and pseudo neural networks en
dc.contributor.author Volná, Eva
dc.contributor.author Kotyrba, Martin
dc.contributor.author Komínková Oplatková, Zuzana
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof Soft Computing
dc.identifier.issn 1432-7643 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 22
utb.relation.issue 6
dc.citation.spage 1803
dc.citation.epage 1813
dc.type article
dc.language.iso en
dc.publisher Springer Verlag
dc.identifier.doi 10.1007/s00500-016-2097-y
dc.relation.uri https://link.springer.com/article/10.1007/s00500-016-2097-y
dc.subject Elliott waves en
dc.subject Backpropagation neural network en
dc.subject Levenberg–Marquardt adaptation en
dc.subject Pseudo neural network en
dc.subject Analytic programming en
dc.subject Differential evolution en
dc.description.abstract This article presents a comparative study of the classification of Elliott waves in data. Regarding the methods of classification, the paper deals with three approaches. The first one is a multilayer artificial neural network (ANN) with sigmoid activation function and backpropagation and Levenberg–Marquardt training algorithm. Second approach uses training algorithms of ANN but forms of activation functions of hidden nodes and nodes in output layers have been proposed by analytical programming with the differential evolution. The last approach offers results performed by synthesized pseudo neural networks where the symbolic regression is used for synthesis of a whole structure of the classifier, i.e., the relation between inputs and output(s) similar to ANN. In this case, meta-evolution version of analytic programming with differential evolution is used. In conclusion, all results of this experimental study were evaluated and compared mutually. © 2016, Springer-Verlag Berlin Heidelberg. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007798
utb.identifier.obdid 43876349
utb.identifier.obdid 43879098
utb.identifier.scopus 2-s2.0-84960157449
utb.identifier.wok 000426761200007
utb.source j-scopus
dc.date.accessioned 2018-04-23T15:01:45Z
dc.date.available 2018-04-23T15:01:45Z
dc.description.sponsorship University of Ostrava [SGS17/PrF/2015]; Grant Agency of the Czech Republic-GACR [P103/15/06700S]; Ministry of Education of the Czech Republic [MSMT-7778/2014]; European Regional Development Fund under the Project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]
utb.contributor.internalauthor Komínková Oplatková, Zuzana
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.affiliation Eva Volná 1 · Martin Kotyrba 1 · Zuzana Komínková Oplatková 2 · Roman Senkerik 2 Communicated by V. Loia. ✉ Eva Volná eva.volna@osu.cz Martin Kotyrba martin.kotyrba@osu.cz Zuzana Komínková Oplatková oplatkova@fai.utb.cz Roman Senkerik senkerik@fai.utb.cz 1 Department of Computer Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic 2 Faculty of Applied Informatics, Tomas Bata University in Zlín, nam. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
utb.fulltext.dates Published online: 3 March 2016
utb.fulltext.references Back T, Fogel DB, Michalewicz Z (1997) Handbook of evolutionary algorithms. Oxford University Press, Oxford, ISBN 0750303921 Bishop CM (1995) Neural networks for pattern recognition. Oxford university press, Oxford, ISBN 978-1-19-853864-6 Elliott RN (1938) The wave principle, reprinted. In: Prechter RR Jr (ed) 1994. R. N, Elliott’s Masterworks Fausett LV (1993) Fundamentals of neural networks: architectures, algorithms and applications. Prentice Hall, USA, ISBN 9780133341867 Fekiac J, Zelinka I, Burguillo JC (2011) A review of methods for encoding neural network topologies in evolutionary computation. The European Conference on Simulation and Modelling, Krakow, Poland, ISBN 978-0-9564944-3-6 Gurney K (1997) An introduction to neural networks. CRC Press, USA, ISBN 1857285034 Hebb D (1949) The organization of behavior. Wiley, New York Hertz J, Kogh A, Palmer RG (1991) Introduction to the theory of neural computation. Addison–Wesley, USA Komínková Oplatková Z, Senkerik R (2013a) Evolutionary synthesis of complex structures—pseudo neural networks for the task of iris dataset classification. In: Nostradamus 2013: prediction, modeling and analysis of complex systems. Springer-Verlag, Heidelberg, pp 211–220, ISBN 978-3-319-00541-6 Kominkova Oplatkova Z, Senkerik R (2013c) Iris data classification by means of pseudo neural networks based on evolutionary symbolic regression. In: 27th European conference on modelling and simulation. ECMS, Alesund, pp 355–360, ISBN 978-0-9564944-6-7 Kominkova Oplatkova Z, Senkerik R, Jasek R (2013b) Comparison between artificial neural net and pseudo neural net classification in Iris dataset case. In: MENDEL 2013 19th international conference on soft computing. Technical University in Brno, Brno, pp 239–244, ISBN 978-80-214-4755-4 Kominkova Oplatkova Z, Senkerik R (2015) Elliott waves classification by means of neural and pseudo neural networks—supplementary material. Avaiable at: http://nod32.fai.utb.cz/promotion/SOCO_Jour_pseudo_NN_output.pdf.Accessed 10 Jan 2015 Koza JR (1998) Genetic programming. MIT Press, USA, ISBN 0-262-11189-6 Miller WT, Werbos PJ, Sutton RS (1995). Neural networks for control. MIT press, USA O’Neill M, Ryan C (2003) Grammatical evolution: evolutionary automatic programming in an arbitrary language. Kluwer Academic Publishers, New York, ISBN 1402074441 Oplatkova Z (2009) Metaevolution: synthesis of optimization algorithms by means of symbolic regression and evolutionary algorithms. Lambert Academic Publishing, Saarbrücken Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78(9):1481–1497 Price K (1999) An introduction to differential evolution. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, London, pp 79–108 Volna E, Kotyrba M, Kominkova Oplatkova Z (2013) Elliott waves classification via softcomputing. In: Proceedings of the 19th international conference on soft computing, Mendel, Czech Republic, Brno, pp 69–74 Volna E, Kotyrba M, Jarusek R (2013) Multiclassifier based on Elliott wave’s recognition. Comput Math Appl 66(2):213–225. https://doi.org/10.1016/j.camwa.2013.01.012 Widrow B, Winter R (1988) Neural nets for adaptive filtering and adaptive pattern recognition. Computer 21(1):25–39 Yao J, Tan CL, Poh HL (1999) Neural networks for technical analysis: a study on KLCI. Int J Theor Appl Financ 2(02):221–241 Zelinka I et al (2011) Analytical programming—a novel approach for evolutionary synthesis of symbolic structures. In: Kita E (ed) Evolutionary algorithms, InTech, ISBN 978-953-307-171-8 Zelinka I, Varacha P, Oplatkova Z (2006) Evolutionary synthesis of neural network. In: Proceedings of 12th international conference on softcomputing—Mendel 2006, no. 12 in MENDEL, Brno University of Technology, VUT Press, Czech Republic, pp 25–31, ISBN 80-214-3195-4
utb.fulltext.sponsorship The research described here has been financially supported by University of Ostrava grant SGS17/PřF/2015, it was also supported by Grant Agency of the Czech Republic—GACR P103/15/06700S, further by financial support of research project NPU I No. MSMT-7778/2014 by the Ministry of Education of the Czech Republic and also by the European Regional Development Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors.
utb.scopus.affiliation Department of Computer Science, University of Ostrava, 30. dubna 22, Ostrava, Czech Republic; Faculty of Applied Informatics, Tomas Bata University in Zlín, nam. T. G. Masaryka 5555, Zlín, Czech Republic
utb.fulltext.projects SGS17/PřF/2015
utb.fulltext.projects MSMT-7778/2014
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam