Kontaktujte nás | Jazyk: čeština English
dc.title | Enhancing the supercapacitor performance of flexible MnOxCarbon cloth electrodes by Pd-decoration | en |
dc.contributor.author | Babkova, Tatiana | |
dc.contributor.author | Fei, Haojie | |
dc.contributor.author | Kazantseva, Natalia E. | |
dc.contributor.author | Sapurina, Irina Yu. | |
dc.contributor.author | Sáha, Petr | |
dc.relation.ispartof | Electrochimica Acta | |
dc.identifier.issn | 0013-4686 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 272 | |
dc.citation.spage | 1 | |
dc.citation.epage | 10 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.identifier.doi | 10.1016/j.electacta.2018.03.143 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0013468618306583 | |
dc.subject | Carbon cloth | en |
dc.subject | Electrodeposition | en |
dc.subject | Manganese oxide | en |
dc.subject | Nucleation and growth | en |
dc.subject | Palladium | en |
dc.subject | Supercapacitor | en |
dc.description.abstract | Manganese oxide (MnOx)-based hybrid electrode materials have been designed by electrochemical deposition on carbon cloth preliminary activated by palladium (Pd) nanoparticles. The synthesis conditions (current density, deposition time) were chosen in such a way as to achieve a stable structure of MnOx with a large surface area. The structural parameters and surface morphology of materials obtained are characterized by Scanning Electron and Transmission Electron Microscopy (SEM, TEM), Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS), etc. The electrochemical behavior was investigated by cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The attained results indicate that MnOx deposits reviled birnessite-type structural feature. Apart from that, the morphology of MnOx transformed with increasing of current density from needlelike structure to loosely-packed thin sheets and then to closed-packed thicker sheets structures. Different morphology exhibits different specific surface area and electrochemical efficiency. Hence electrochemical analysis reviled the highest specific capacitance (186 F g−1) and cyclic stability for MnOxPdCC with obtained at current density of 1 mA cm−2. It can be explained by the formation of a less dense structure of MnOx (loosely-packed thin sheets) with large specific surface area and thus better permeability for Na+ and SO4 −2 ions. As to the role of Pd, its nanoparticles deposited on CC can play a dual role, namely electron conducting passway between CC and MnOx and structure–guiding agent of manganese oxides nucleation and grows. © 2018 Elsevier Ltd | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007878 | |
utb.identifier.obdid | 43879642 | |
utb.identifier.scopus | 2-s2.0-85045018770 | |
utb.identifier.wok | 000430690200001 | |
utb.identifier.coden | ELCAA | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-04-23T15:01:49Z | |
dc.date.available | 2018-04-23T15:01:49Z | |
dc.description.sponsorship | CZ.1.05/2.1.00/19.0409, CPS, Center for Produce Safety; ERDF, European Regional Development Fund; LO1504, NPU, Northwestern Polytechnical University; LTACH17015, MOE, Ministry of Education | |
dc.description.sponsorship | Ministry of Education, Youth, and Sports of the Czech Republic [LTACH17015]; NPU Program I [LO1504]; Operational Program Research and Development for Innovations; European Regional Development Fund (ERDF); national budget of the Czech Republic [CZ.1.05/2.1.00/19.0409] | |
utb.contributor.internalauthor | Babkova, Tatiana | |
utb.contributor.internalauthor | Fei, Haojie | |
utb.contributor.internalauthor | Kazantseva, Natalia E. | |
utb.contributor.internalauthor | Sapurina, Irina Yu. | |
utb.contributor.internalauthor | Sáha, Petr | |
utb.fulltext.affiliation | T.A. Babkova * , H. Fei, N.E. Kazantseva, I.Y. Sapurina, P. Saha Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, 760 01, Czech Republic * Corresponding author. E-mail address: tbabkova@cps.utb.cz (T.A. Babkova). | |
utb.fulltext.dates | Received 17 December 2017 Received in revised form 19 March 2018 Accepted 22 March 2018 Available online 23 March 2018 | |
utb.fulltext.references | [1] S.W. Zhang, G.Z. Chen, Manganese oxide based materials for supercapacitors, Energy Mater (2008) 186. [2] B. Babakhani, D.G. Ivey, Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized manganese oxide electrodes, J. Power Sources 196 (2011) 10762. [3] C.M. Julien, A. Mauger, Nanostructured MnO 2 as electrode materials for energy storage, J. Nanomater. 7 (2017) 396. [4] W. Wei, X. Cui, X. Mao, W. Chen, D.G. Ivey, Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications e effect of supersaturation ratio, Electrochim. Acta 56 (2011) 1619. [5] M. Dupont, A.F. Hollenkamp, S.W. Donne, Electrochemically active surface area effects on the performance of manganese dioxide for electrochemical capacitor applications, Electrochim. Acta 104 (2013) 140. [6] Q. Ghodbane, J.L. Paskal, F. Favier, Microstructural effects on charge-storage properties in MnO 2 -based electrochemical supercapacitors, ACS Appl. Mater. Interfaces 5 (2009) 1130. [7] J. Sanchez-Gonzalez, F. Stoeckli, T.A. Centeno, The role of the electric conductivity of carbons in the electrochemical capacitor performance, J. Electroanal. Chem. 657 (2011) 176. [8] G. Cao, X. Li, Y. Wang, F. C Walsh, J.H. Ouyang, D. Jia, Y. Zhou, Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors, J. Power Sources 293 (2015) 657. [9] P.V. Lam, K. Jo, C.H. Kim, J.H. Kim, H.J. Lee, S.H. Lee, Activated carbon textile via chemistry of metal extraction for supercapacitors, ACS Nano 10 (2016) 11351. [10] T. Ouyang, K. Cheng, F. Yang, J. Jiang, J. Yan, K. Zhu, K. Ye, G. Wang, L. Zhou, D. Cao, A general in-situ etching and synchronous heteroatom doping strategy to boost the capacitive performance of commercial carbon fiber cloth, Chem. Eng. J. 335 (2018) 638. [11] B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Paper-based electrodes for flexible energy storage devices, Adv. Sci. 7 (2017). [12] H. Li, L. Jiang, Q. Cheng, Y. He, V. Pavlinek, P. Saha, C. Li, MnO 2 nanoflakes/hierarchical porous carbon nanocomposites for high-performance super-capacitor electrodes, Electrochim. Acta 164 (2015) 252. [13] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. 5 (2017). [14] Y. Saito, M. Meguro, M. Ashizawa, K. Waki, R. Yuksel, H.E. Unalan, H. Matsumoto, Manganese dioxide nanowires on carbon nanofiber frameworks for efficient electrochemical device electrodes, RSC Adv. 20 (2017) 12351. [15] X. Li, G. Wang, X. Wang, X. Li, J. Li, Flexible supercapacitor based on MnO 2 nanoparticles via electrospinning, J. Mater. Chem. 1 (2013) 10103. [16] X. Du, X. Zhao, Z. Huang, Y. Li, Q. Zhang, Freestanding composite electrodes of MnO x embedded carbon nanofibers for high-performance supercapacitors, RSC Adv. 4 (2014) 39087. [17] X. Gu, J. Yue, L. Li, H. Xue, J. Yang, X. Zhao, General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes, Electrochim. Acta 184 (2015) 250. [18] A. Sarcar, A.K. Satpati, V. Kumar, S. Kumar, Sol-gel synthesus of manganese oxide films and their predominant electrochemical properties, Electrochim. Acta 167 (2015) 126. [19] X. Zhang, X. Sun, H. Zhang, D. Zhang, Y. Ma, Microwave-assisted reflux rapid synthesis of MnO 2 nanostructures and their application in supercapacitors, Electrochim. Acta 87 (2013) 637. [20] P. Wang, Y.-J. Zhao, L.-X. Wen, J.-F. Chen, Z.-G. Lei, Ultrasound-microwave-assisted synthesis of MnO 2 supercapacitor electrode materials, Ind. Eng. Chem. Res. 53 (2014) 20116. [21] X. Hu, X. Lin, Z. Ling, X. Fu, Fabrication and characteristics of galvanostatic electrodeposited MnO 2 on porous nickel from etched aluminium, Electrochim. Acta 138 (2014) 132. [22] H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu, Y. Huang, Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes, Nano Res. 8 (2015) 1148. [23] T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, D. Belanger, Crystalline Mno2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc. 153 (2006) 2171. [24] M. Dupont, S.W. Donne, Nucleation and growth of electrodeposited manganese dioxide for electrochemical capacitors, Electrochim. Acta 120 (2014) 219. [25] M.F. Dupont, S.W. Donne, Electrolytic manganese dioxide structural and morphological effects on capacitive performance, Electrochim. Acta 191 (2016) 479. [26] W. Huang, J. Li, Y. Xu, Nucleation/Growth Mechanisms and Morphological evolution of porous MnO 2 coating deposited on graphite for supercapacitor, Materials 10 (2017) 1205. [27] A.L.M. Reddy, M.M. Shaijumon, R. Gowda, P.M. Ajayan, Multisegmented AuMnO2/carbon nanotube hybrid coaxil arrays for high-power supercapacitor applications, J. Phys. Chem. C 114 (2010) 658. [28] P.-Y. Tang, Y.-Q. Zhao, Y.-M. Wang, C.-L. Xu, A metal-decorated nickel foam- inducing regulatable manganese dioxide nanosheet array architecture for high-performance supercapacitor applications, Nanoscale 5 (2013) 8156. [29] W. Bai, Q. Sheng, J. Zheng, Three-dimensional nanostructures formed from morphologies controlled synthesis of Pt particles based on gas-liquid reaction for electro-catalytic application, ACS Sustain. Chem. Eng. 4 (2016) 4895. [30] C. Julien, M. Massot, Spectroscopic studies of the local structure in positive electrodes for lithium batteries, Phys. Chem. Chem. Phys. 4 (2002) 4226. [31] C. Julien, M. Massot, C. Poinsignon, Lattice vibrations of manganese oxides Part I, Periodic Struct. Spectrochim. Acta Part A 60 (2004) 689. [32] M. Chigane, M. Ishikawa, Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism, J. Electrochem. Soc. 147 (2000) 2246. [33] M. Oku, K. Hirokawa, S. Ikeda, X-ray photoelectron spectroscopy of manganese-oxygen systems, J. Electron. Spectrosc. Relat. Phenom. 7 (1975) 465. [34] C. Zhu, S. Guo, Y. Fang, L. Han, E. Wang, S. Dong, One-step electrochemical approach to the synthesis of graphene/MnO 2 nanowall hybrids, Nano Res. 4 (2011) 648. [35] I. Aldama, V. Barranco, T.A. Centeno, J. Ibanez, J.M. Rojo, Composite electrodes made from carbon cloth as supercapacitor material and manganese and cobalt oxide as battery one, J. Electrochem. Soc. 163 (2016) A758. [36] Y.-C. Chen, Y.-K. Hsu, Y.-G. Lin, Y.-K. Lin, Y.-Y. Horng, L.-C. Chen, K.eH. Chen, Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode, Electrochim. Acta 56 (2011) 7124. [37] H. Zang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage et al, Nano Lett. 8 (2008) 2664. [38] C.-C. Wang, H.-C. Chen, S.-Y. Lu, Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material, Chem. Eur. J. 20 (2014) 517e523. [39] S. Hassan, M. Suzuki, S. Mori, A.A. El-Moneim, MnO 2 /carbon nanowall electrode for future energy storage application: effect of carbon nanowall growth period and MnO2 mass loading, RSC Adv. 4 (2014) 20479. | |
utb.fulltext.sponsorship | his work was mainly supported by the Ministry of Education, Youth, and Sports of the Czech Republic (project no. LTACH17015), NPU Program I (LO1504) and Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of the Czech Republic, within the framework of the CPS e strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409). L. Münster and M. Micusik also acknowledged for their assistance with collecting TEM images and XPS analysis. | |
utb.scopus.affiliation | Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, Czech Republic | |
utb.fulltext.projects | LTACH17015 | |
utb.fulltext.projects | LO1504 | |
utb.fulltext.projects | CZ.1.05/2.1.00/19.0409 |