Publikace UTB
Repozitář publikační činnosti UTB

Novelty detection system based on multi-criteria evaluation in respect of industrial control system

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Novelty detection system based on multi-criteria evaluation in respect of industrial control system en
dc.contributor.author Vávra, Jan
dc.contributor.author Hromada, Martin
dc.relation.ispartof Advances in Intelligent Systems and Computing
dc.identifier.issn 2194-5357 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-319-91191-5
dc.date.issued 2019
utb.relation.volume 765
dc.citation.spage 280
dc.citation.epage 289
dc.event.title 7th Computer Science On-line Conference, CSOC 2018
dc.event.sdate 2018-04-25
dc.event.edate 2018-04-28
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Verlag
dc.identifier.doi 10.1007/978-3-319-91192-2_28
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-319-91192-2_28
dc.subject Anomaly detection en
dc.subject Cyber security en
dc.subject Industrial control systems en
dc.subject Multi-criteria evaluation en
dc.subject Novelty detection en
dc.description.abstract The industrial processes and systems have become more sophisticated and also adopted in diverse areas of human activities. The Industrial Control System (ICS) or Internet of Things (IoT) have become essential for our daily life, and therefore vital for contemporary society. These systems are often included in Critical Information Infrastructure (CII) which is crucial for each state. Consequently, the cyber defense is and will be one of the most important security field for our society. Therefore, we use the novelty detection approach in order to identify anomalies which can be a symptom of the cyber-attack in ICS environment. To achieve the main goal of the article One-Class Support Vector Machine (OCSVM) algorithm was used. Moreover, the anomaly detection algorithm is adjusted via multi-criteria evaluation and classifier fusion. © 2019, Springer International Publishing AG, part of Springer Nature. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007982
utb.identifier.obdid 43878580
utb.identifier.scopus 2-s2.0-85048054481
utb.source d-scopus
dc.date.accessioned 2018-07-27T08:47:37Z
dc.date.available 2018-07-27T08:47:37Z
dc.description.sponsorship IGA/FAI/2018/003; VI20152019049; MSU, Mississippi State University; ORNL, Oak Ridge National Laboratory; MSMT-7778/2014, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; LO1303, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; VI20172019054, Ministerstvo Vnitra České Republiky; CZ.1.05/2.1.00/03.0089, FEDER, European Regional Development Fund
utb.contributor.internalauthor Vávra, Jan
utb.contributor.internalauthor Hromada, Martin
utb.fulltext.affiliation Jan Vávra, Martin Hromada Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic jvavra@fai.utb.cz
utb.fulltext.dates -
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam