Publikace UTB
Repozitář publikační činnosti UTB

Population diversity analysis for the chaotic based selection of individuals in differential evolution

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Population diversity analysis for the chaotic based selection of individuals in differential evolution en
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Viktorin, Adam
dc.contributor.author Pluháček, Michal
dc.contributor.author Kadavý, Tomáš
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.identifier.issn 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-319-91640-8
dc.date.issued 2018
utb.relation.volume 10835 LNCS
dc.citation.spage 283
dc.citation.epage 294
dc.event.title 8th International Conference on Bioinspired Optimization Methods and Their Applications, BIOMA 2018
dc.event.location Paris
utb.event.state-en France
utb.event.state-cs Francie
dc.event.sdate 2018-05-16
dc.event.edate 2018-05-18
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Verlag
dc.identifier.doi 10.1007/978-3-319-91641-5_24
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-319-91641-5_24
dc.subject Differential Evolution en
dc.subject Complex dynamics en
dc.subject Deterministic chaos en
dc.subject Population diversity en
dc.subject Chaotic map en
dc.description.abstract This research deals with the modern and popular hybridization of chaotic dynamics and evolutionary computation. It is aimed at the influence of chaotic sequences on the population diversity as well as the algorithm performance of the simple parameter adaptive Differential Evolution (DE) strategy: jDE. Experiments are focused on the extensive investigation of the different randomization schemes for the selection of individuals in DE algorithm driven by the nine different two-dimensional discrete chaotic systems, as the chaotic pseudo-random number generators. The population diversity and jDE convergence are recorded on the 15 test functions from the CEC 2015 benchmark. © 2018, Springer International Publishing AG, part of Springer Nature. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007996
utb.identifier.obdid 43879135
utb.identifier.scopus 2-s2.0-85047482669
utb.identifier.wok 000554401600024
utb.source d-scopus
dc.date.accessioned 2018-07-27T08:47:38Z
dc.date.available 2018-07-27T08:47:38Z
dc.description.sponsorship Ministry of Education; CA15140, COST, European Cooperation in Science and Technology; IC406, COST, European Cooperation in Science and Technology; IGA/CebiaTech/2018/003; MSMT-7778/2014; LO1303; CZ.1.05/2.1.00/03.0089, FEDER, European Regional Development Fund; COST, European Cooperation in Science and Technology
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the Project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2018/003]; COST (European Cooperation in Science Technology) [Action CA15140, Action IC406]
utb.ou CEBIA-Tech
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Kadavý, Tomáš
utb.fulltext.affiliation Roman Senkerik ( ✉ ) http://orcid.org/0000-0002-5839-4263 , Adam Viktorin http://orcid.org/0000-0003-0861-0340 , Michal Pluhacek http://orcid.org/0000-0002-3692-2838 , and Tomas Kadavy http://orcid.org/0000-0002-3341-4336 Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, 760 01 Zlin, Czech Republic {senkerik,aviktorin,pluhacek,kadavy}@utb.cz
utb.fulltext.dates -
utb.fulltext.references 1. Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003) 2. dos Santos Coelho, L., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos Solitons Fractals 39(2), 510–518 (2009) 3. Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Comput. Math. Appl. 60(4), 1088–1104 (2010) 4. Pluhacek, M., Senkerik, R., Davendra, D., Oplatkova, Z.K., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Comput. Math. Appl. 66(2), 122–134 (2013) 5. Pluhacek, M., Senkerik, R., Davendra, D.: Chaos particle swarm optimization with Eensemble of chaotic systems. Swarm Evol. Comput. 25, 29–35 (2015) 6. Metlicka, M., Davendra, D.: Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems. Swarm Evol. Comput. 25, 15–28 (2015) 7. Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013) 8. Wang, G.G., Guo, L., Gandomi, A.H., Hao, G.S., Wang, H.: Chaotic Krill Herd algorithm. Inf. Sci. 274, 17–34 (2014) 9. Zhang, C., Cui, G., Peng, F.: A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis. Appl. Therm. Eng. 104, 707–719 (2016) 10. Jordehi, A.R.: Chaotic bat swarm optimisation (CBSO). Appl. Soft Comput. 26, 523–530 (2015) 11. Wang, G.G., Deb, S., Gandomi, A.H., Zhang, Z., Alavi, A.H.: Chaotic cuckoo search. Soft. Comput. 20(9), 3349–3362 (2016) 12. dos Santos Coelho, L., Ayala, H.V.H., Mariani, V.C.: A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization. Appl. Math. Comput. 234, 452–459 (2014) 13. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010) 14. Weber, M., Neri, F., Tirronen, V.: A study on scale factor in distributed differential evolution. Inf. Sci. 181(12), 2488–2511 (2011) 15. Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation compact differential evolution for limited memory optimization problems. Inf. Sci. 181(12), 2469–2487 (2011) 16. Iacca, G., Caraffini, F., Neri, F.: Compact differential evolution light: high performance despite limited memory requirement and modest computational overhead. J. Comput. Sci. Technol. 27(5), 1056–1076 (2012) 17. Zamuda, A., Brest, J.: Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm Evol. Comput. 25, 72–99 (2015) 18. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006) 19. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer Science & Business Media, Heidelberg (2006). https://doi.org/10.1007/3-540-31306-0 20. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016) 21. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009) 22. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact differential evolution. IEEE Trans. Evol. Comput. 15(1), 32–54 (2011) 23. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011) 24. Brest, J., Korošec, P., Šilc, J., Zamuda, A., Bošković, B., Maučec, M.S.: Differential evolution and differential ant-stigmergy on dynamic optimisation problems. Int. J. Syst. Sci. 44(4), 663–679 (2013) 25. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014) 26. Senkerik, R., Pluhacek, M., Zelinka, I., Viktorin, A., Kominkova Oplatkova, Z.: Hybridization of multi-chaotic dynamics and adaptive control parameter adjusting jDE strategy. In: Matoušek, R. (ed.) ICSC-MENDEL 2016. AISC, vol. 576, pp. 77–87. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58088-3 8 27. Senkerik, R., Pluhacek, M., Zelinka, I., Davendra, D., Janostik, J.: Preliminary study on the randomization and sequencing for the chaos embedded heuristic. In: Abraham, A., Wegrzyn-Wolska, K., Hassanien, A.E., Snasel, V., Alimi, A.M. (eds.) Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015. AISC, vol. 427, pp. 591–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29504-6 55 28. Sprott, J.C., Sprott, J.C.: Chaos and Time-Series Analysis, vol. 69. Citeseer (2003) 29. Poláková, R., Tvrdík, J., Bujok, P., Matoušek, R.: Population-size adaptation through diversity-control mechanism for differential evolution. In: MENDEL, 22th International Conference on Soft Computing, pp. 49–56 (2016) 30. Viktorin, A., Pluhacek, M., Senkerik, R.: Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4797–4803. IEEE (2016)
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014), further by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2018/003. This work is also based upon support by COST (European Cooperation in Science & Technology) under Action CA15140, Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO), and Action IC406, High-Performance Modelling and Simulation for Big Data Applications (cHiPSet).
utb.wos.affiliation [Senkerik, Roman; Viktorin, Adam; Pluhacek, Michal; Kadavy, Tomas] Tomas Bata Univ Zlin, Fac Appl Informat, TG Masaryka 5555, Zlin 76001, Czech Republic
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, Zlin, Czech Republic
utb.fulltext.projects LO1303 (MSMT-7778/2014)
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
utb.fulltext.projects IGA/CebiaTech/2018/003
utb.fulltext.projects CA15140
utb.fulltext.projects ImAppNIO
utb.fulltext.projects IC406
utb.fulltext.projects cHiPSet
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam