Publikace UTB
Repozitář publikační činnosti UTB

New running technique for the bison algorithm

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title New running technique for the bison algorithm en
dc.contributor.author Kazíková, Anežka
dc.contributor.author Pluháček, Michal
dc.contributor.author Viktorin, Adam
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.identifier.issn 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-319-91252-3
dc.date.issued 2018
utb.relation.volume 10841 LNAI
dc.citation.spage 417
dc.citation.epage 426
dc.event.title 17th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2018
dc.event.location Zakopane
utb.event.state-en Poland
utb.event.state-cs Polsko
dc.event.sdate 2018-06-03
dc.event.edate 2018-06-07
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Verlag
dc.identifier.doi 10.1007/978-3-319-91253-0_39
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-319-91253-0_39
dc.subject Bison algorithm en
dc.subject Running technique en
dc.subject Swarm algorithms en
dc.description.abstract This paper examines the performance of the Bison Algorithm with a new running technique. The Bison Algorithm was inspired by the typical behavior of bison herds: the swarming movement of endangered bison as the exploitation factor and the running as the exploration phase of the optimization. While the original running procedure allowed the running groupto scatter throughout the search space, the new approach proposed in this paper preserves the initial formation of the running group throughout the optimization process. At the beginning of the paper, we introduce the Bison Algorithm and explain the new running technique procedure. Later the performance of the adjusted algorithm is tested and compared to the Particle Swarm Optimization and the Cuckoo Search algorithm on the IEEE CEC 2017 benchmark set, consisting of 30 functions. Finally, we evaluate the meaning of the experiment outcomes for future research. © Springer International Publishing AG, part of Springer Nature 2018. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1008002
utb.identifier.obdid 43878973
utb.identifier.scopus 2-s2.0-85048062416
utb.identifier.wok 000552718500039
utb.source d-scopus
dc.date.accessioned 2018-07-27T08:47:39Z
dc.date.available 2018-07-27T08:47:39Z
dc.description.sponsorship IC1406, COST, European Cooperation in Science and Technology; CA15140, COST, European Cooperation in Science and Technology; IGA/CebiaTech/2018/003; MSMT-7778/2014, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; LO1303, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; CZ.1.05/2.1.00/03.0089, FEDER, European Regional Development Fund; COST, European Cooperation in Science and Technology
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the Project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2018/003]; COST (European Cooperation in Science and Technology)European Cooperation in Science and Technology (COST) [CA15140, IC1406]
utb.ou CEBIA-Tech
utb.contributor.internalauthor Kazíková, Anežka
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.affiliation Anezka Kazikova ( ✉ ) , Michal Pluhacek, Adam Viktorin, and Roman Senkerik Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, 760 01 Zlin, Czech Republic {kazikova,pluhacek,aviktorin,senkerik}@utb.cz
utb.fulltext.dates -
utb.fulltext.references 1. Ouaarab, A., Ahiod, B., Yang, X.S.: Discrete Cuckoo Search algorithm for the travelling salesman problem. Neural Comput. Appl. 24(7–8), 1659–1669 (2014) 2. Duan, Y., Ying, S.: A particle swarm optimization algorithm with ant search for solving traveling salesman problem. In: International Conference on Computational Intelligence and Security, Beijing, pp. 137–141 (2009) 3. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995) 4. Yang, X.-S.: Firefly algorithm, Lévy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer, London (2010). https://doi.org/10.1007/978-1-84882-983-1 15 5. Yang, X.-S., Deb, S.: Cuckoo Search via Lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214, India, December 2009. IEEE Publications (2009) 6. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014) 7. Kazikova, A., Pluhacek, M., Senkerik R., Viktorin, A.: Proposal of a new swarm optimization method inspired in Bison behavior. In: Matousek, R. (ed.) Recent Advances in Soft Computing (Mendel 2017). Advances in Intelligent Systems and Computing. Springer, Heidelberg (2017, in press) 8. Faris, H., Aljarah, I., Mirjalili, S., Castillo, P., Merelo, J.: EvoloPy: an open-source nature-inspired optimization framework in Python. In: Proceedings of the 8th International Joint Conference on Computational Intelligence (IJCCI 2016), ECTA, vol. 1, pp. 171–177 (2016) 9. Awad, N.H., Ali, M.Z., Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Technical report, Nanyang Technological University, Singapore (2016) 10. Berman, R.: American Bison (Nature Watch). Lerner Publications, Minneapolis (2008)
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014), further by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2018/003. This work is also based upon support by COST (European Cooperation in Science and Technology) under Action CA15140, Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO), and Action IC1406, High-Performance Modelling and Simulation for Big Data Applications (cHiPSet). The work was further supported by resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz).
utb.wos.affiliation [Kazikova, Anezka; Pluhacek, Michal; Viktorin, Adam; Senkerik, Roman] Tomas Bata Univ Zlin, Fac Appl, TG Masaryka 5555, Zlin 76001, Czech Republic
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, Zlin, Czech Republic
utb.fulltext.projects LO1303 (MSMT-7778/2014)
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
utb.fulltext.projects IGA/CebiaTech/2018/003
utb.fulltext.projects CA15140
utb.fulltext.projects ImAppNIO
utb.fulltext.projects IC1406
utb.fulltext.projects cHiPSet
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam