Kontaktujte nás | Jazyk: čeština English
dc.title | Poly(vinyl pyrrolidone) solutions irradiated with microwaves: study and analysis of their possible degradation | en |
dc.contributor.author | Bernal Ballén, Andrés | |
dc.contributor.author | Kuřitka, Ivo | |
dc.contributor.author | Nuñez-Vallejos, Diego-Alejandro | |
dc.contributor.author | Sáha, Petr | |
dc.relation.ispartof | Biointerface Research in Applied Chemistry | |
dc.identifier.issn | 2069-5837 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 8 | |
utb.relation.issue | 3 | |
dc.citation.spage | 3273 | |
dc.citation.epage | 3277 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | AMG Transcend Association | |
dc.relation.uri | http://biointerfaceresearch.com/?page_id=2421 | |
dc.relation.uri | http://biointerfaceresearch.com/?download=2360 | |
dc.subject | poli(vinyl pyrrolidone) | en |
dc.subject | microwave irradiation | en |
dc.subject | thermal effect | en |
dc.subject | degradation | en |
dc.description.abstract | Poly(vinyl pyrrolydone) (PVP) dissolved in ethylene glycol and water were exposed to microwave irradiation and conventional heating for 1 hour with the purpose to determine their possible degradation. Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy and viscosity measurement were used as characterization techniques. FTIR shows that microwave treatment produces a minor effect on the solutions. UV-vis reinforces the negligible affectation that PVP experienced whereas the viscosity experiments indicated that microwave irradiation did not cause significant changes in the polymer molar mass and neither chain cleavage nor crosslinking reactions were present. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1008088 | |
utb.identifier.obdid | 43878230 | |
utb.identifier.scopus | 2-s2.0-85052212951 | |
utb.identifier.wok | 000435601200020 | |
utb.source | j-wok | |
dc.date.accessioned | 2018-07-27T08:47:43Z | |
dc.date.available | 2018-07-27T08:47:43Z | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic-Program NPU I [LO1504] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Kuřitka, Ivo | |
utb.contributor.internalauthor | Sáha, Petr | |
utb.fulltext.affiliation | Andrés Bernal-Ballén 1, * , Ivo Kuritka 2 , Diego-Alejandro Nuñez-Vallejos 1 , Petr Saha 2 1 Grupo de Investigación en Ingeniería Biomédica. Vicerrectoría de Investigacionies. Universidad Manuela Beltrán. Av. Circunvalar No. 60-00, Bogotá, Colombia 2 Centre of Polymer System, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 76001 Zlin, Czech Republic *corresponding author e-mail address: andres.bernal@docentes.umb.edu.co | |
utb.fulltext.dates | Received: 30.04.2018 Revised: 10.06.2018 Accepted: 11.06.2018 Published on-line: 15.06.2018 | |
utb.fulltext.references | [1] Lidstrom P., Tierney J., Wathey B., Microwave assisted organic synthesis: a review, Tetrahedron, 57, 45, 9225–9283, 2001. [2] Saleh T., Majeed S., Nayak A., Bhushan B., Principles and Advantages of Microwave-Assisted Methods for the Synthesis of Nanomaterials for Water Purification, Advanced Nanomaterials for Water Engineering, Treatment, and Hydraulics, IGI Global, 2017. [3] Whittaker G., Microwave chemistry, School Science Review, 85, 87–94, 2004. [3] Kubrakova I., Microwave radiation in analytical chemistry: the scope and prospects for application, Russian Chemical Reviews, 71, 4, 283–294, 2002. [4] Mishra R., Sharma A., Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing, Composites Part A: Applied Science and Manufacturing, 81, 78–97, 2016. [5] Edinger M., Knoop M., Herdoncuff H., Rantanen J., Rades T., Lobmann K., Quantification of microwave-induced amorphization of celecoxib in PVP tablets using transmission Raman spectroscopy, European Journal of Pharmaceutical Science, 117, 62–67, 2018. [6] Kubrakova I., Microwave radiation in analytical chemistry: the scope and prospects for application, Russian Chemical Reviews, 71, 4, 283–294, 2002. [7] Bodgal D., Penczek P., Pielichowski J., Prociak A., Microwave assisted synthesis, crosslinking, and processing of polymeric materials, Advanced Polymer Science, 163, 193–263, 2003. [8] Wiesbrock F., Hoogenboom R., Schubert U., Microwave-assisted polymer synthesis: state-of-the-art and future perspectives, Macromolecular Rapid Communication, 25, 20, 1739–1764, 2004. [9] Adachi K., Iwamura T., Chujo Y., Microwave assisted synthesis of organic-inorganic polymer hybrids, Polymer Bulletin, 55, 5, 309–315, 2005. [10] De la Hoz A., Diaz-Ortiz A., Moreno A., Microwaves in organic synthesis. Thermal and non-thermal microwave effects, Chemical Society Reviews, 34, 2, 164–178, 2005. [11] Dallinger D., Kappe C., Microwave-assisted synthesis in water as solvent, Chemical Reviews, 107, 6, 2563–2591, 2007. [12] Sosnik A., Gotelli G., Abraham G., Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: how new and how powerful, Progress in Polymer Science, 36, 8, 1050–1078, 2011. [13] Hoogenboom R., Schubert U., Microwave-Assisted polymer synthesis: recent developments in a rapidly expanding field of research, Macromolecular Rapid Communication, 28, 4, 368–386, 2007. [14] Mathe N., Scriba M., Rikhotso S., Coville N., Microwave-irradiation polyol synthesis of PVP-protected Pt--Ni electrocatalysts for methanol oxidation reaction, Electrocatalysis, 9, 3, 388–399, 2018. [15] Bernal A., Kuritka I., Kasparkova V., Sáha P., The effect of microwave irradiation on poly (vinyl alcohol) dissolved in ethylene glycol, Journal of Applied Polymer Science, 128, 1, 175–180, 2013. [16] Sionkowska A., Wisniewski M., Kaczmarek H., Skopinska J., Chevallier P., Mantovani D., Lazare S., Tokarev V., The influence of UV irradiation on surface composition of collagen/PVP blended films, Applied Surface Science, 253, 4, 1970–1977, 2006. [17] Sedlařik V., Saha N., Kuřitka I., Saha P., Characterization of polymeric biocomposite based on poly (vinyl alcohol) and poly (vinyl pyrrolidone), Polymer Composites, 27, 2, 147–152, 2006. [18] Sheftel V., Indirect food additives and polymers: migration and toxicology, CRP Press, 2000. [19] Singh A., Raykar V., Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties, Colloid and Polymer Science, 286, 14–15, 1667–1673, 2008. [20] Katsuki H., Komarneni S., Nano-and micro-mater sized silver metal powders by microwave-polyol process, Journal of the Japan Society of Powder and Powder Metallurgy, 50, 10, 745–750, 2003. [21] Liu D., Ren S., Wang G., Wen L., Yu J., Rapid synthesis and morphology control of nickel powders via a microwave-assisted chemical reduction method, Journal of Material Science, 44, 1, 108–113, 2009. [22] Soltani N., Saion E., Erfani M., Rezaee K., Bahmanrokh G., Drummen G., Bahrami A., Zobir M., Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles synthesized by microwave irradiation, International Journal of Molecular Science, 13, 10, 12412-12427, 2012. [23] Huang K., Lin Z., Yang X., Numerical simulation of microwave heating on chemical reaction in dilute solution, Progress in Electromagnetic Research, 49, 273–289, 2004. [24] Kappe C., Controlled microwave heating in modern organic synthesis, Angewandte Chemie International Edition, 43, 46, 6250–6284, 2004. [25] Borodko Y., Lee H., Joo S., Zhang Y., Somorjai G., Spectroscopic study of the thermal degradation of PVP-capped Rh and Pt nanoparticles in H2 and O2 environments, The Journal of Physical Chemistry C, 114, 2, 1117–1126, 2009. [26] Morsi M., Abdelghany A., UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles, Material Chemistry and Physicis, 201, 100–112, 2017. [27] Tavlarakis P., Urban J., Snow N., Determination of total polyvinylpyrrolidone (PVP) in ophthalmic solutions by size exclusion chromatography with ultraviolet-visible detection, Journal of Chromatografic Science, 49, 6, 457–462, 2011. [28] Khan M., Gul K., Rehman N., Interaction of polyvinylpyrrolidone with metal chloride aqueous solutions, Chinese Journal of Polymer Science, 22, 6, 581–584, 2004. [29] Peniche C., Zaldivar D., Pazos M., Páz S., Bulay A., Román J., Study of the thermal degradation of poly (N-vinyl-2-pyrrolidone) by thermogravimetry–FTIR, Journal of Applied Polymer Science, 50, 3, 485–493, 1993. [30] Loria-Bastarrachea M., Herrera- Kao W., Cauich-Rodriguez J., Cervantes-Uc J., Vázquez-Torres H., Ávila-Ortega A., A TG/FTIR study on the thermal degradation of poly (vinyl pyrrolidone), Journal of Thermal Analysis and Calorimetry, 104, 2, 737–742, 2011. [31] Du Y., Yang P., Mou Z., Hua N., Jiang L., Thermal decomposition behaviors of PVP coated on platinum nanoparticles, Journal of Applied Polymer Science, 99, 1, 23–26, 2006. [32] Darwish M., Mohammadi A., Assi N., Microwave-assisted polyol synthesis and characterization of PVP-capped cds nanoparticles for the photocatalytic degradation of tartrazine,” Materials Research Bulletin. 74, 387–396, 2016. [33] Borodko Y., Habas S., Koebel M., Yang P., Frei H., Somorjai G., Probing the interaction of poly (vinylpyrrolidone) with platinum nanocrystals by UV- Raman and FTIR, The Journal of Physical Chemistry B, 110, 46, 23052–23059, 2006. [34] Huang J., Yang H., Chen M., Ji t., Hou Z., Wu M., An infrared spectroscopy study of PES PVP blend and PES-g-PVP copolymer,” Polyme Testing, 59, 212–219, 2017. [35] Kumar M., Devi P., Shivling V., Thermal stability and electrochemical properties of PVP-protected Ru nanoparticles synthesized at room temperature, Materials Research Express, 4, 8, 85006, 2017. [36] Kourde-Hanafi Y., Loulergue P., Szymczyk A., Van der Bruggen B., Nachtnebel M., Rabiller-Baudry M., Audic L., Polt P., Baddari K., Influence of PVP content on degradation of PES/PVP membranes: Insights from characterization of membranes with controlled composition,” Journal of Membrane Science, 533, 261–269, 2017. [37] Laot C., Marand E., Oyama H., Spectroscopic characterization of molecular interdiffusion at a poly (vinyl pyrrolidone)/vinyl ester interface, Polymer (Guildford), 40, 5, 1095–1108, 1999. [38] Wang Y., Zhang X., Qiu D., Li Y., Yao L., Duan J., Ultrasonic assisted microwave synthesis of poly (Chitosan-co-gelatin)/polyvinyl pyrrolidone IPN hydrogel,” Ultrasonics Sonochemistry, 40, 714–719, 2018. [39] Al-Shammari B., Al-Fariss T., Al-Sewailm F., Elleithy R., The effect of polymer concentration and temperature on the rheological behavior of metallocene linear low density polyethylene (mLLDPE) solutions, Journal of King Saud University - Science, 23, 1, 9–14, 2011. [40] Taghizadeh M., Asadpour T., Effect of molecular weight on the ultrasonic degradation of poly (vinyl-pyrrolidone), Ultrasonics Sonochemistry, 16, 2, 280–286, 2009. [41] Bühler V., Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone, Springer Science & Business Media, 2005. [42] Mason T., Peters D., Practical sonochemistry: power ultrasound uses and applications, Woodhead Publishing, 2002 [43] Swei J., Talbot J., Viscosity correlation for aqueous polyvinylpyrrolidone (PVP) solutions, Journal of Applied Polymer Science, 90, 4, 1153–1155, 2003 | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic-Program NPU I (LO1504). | |
utb.wos.affiliation | [Bernal-Ballen, Andres; Nunez-Vallejos, Diego-Alejandro] Univ Manuela Beltran, Grp Invest Ingn Biomed, Invest, Av Circunvalar 60-00, Bogota, Colombia; [Kuritka, Ivo; Saha, Petr] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Grupo de Investigación en Ingeniería Biomédica, Universidad Manuela Beltrán, Av. Circunvalar No. 60-00, Bogotá, Colombia; Centre of Polymer System, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, Zlin, 76001, Czech Republic | |
utb.fulltext.projects | LO1504 |