Publikace UTB
Repozitář publikační činnosti UTB

Folic acid-chitosan-alginate nanocomplexes for multiple delivery of chemotherapeutic agents

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Folic acid-chitosan-alginate nanocomplexes for multiple delivery of chemotherapeutic agents en
dc.contributor.author Di Martino, Antonio
dc.contributor.author Trusova, Marina Evgenievna
dc.contributor.author Postnikov, Pavel S.
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Journal of Drug Delivery Science and Technology
dc.identifier.issn 1773-2247 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 47
dc.citation.spage 67
dc.citation.epage 76
dc.type article
dc.language.iso en
dc.publisher Editions de Sante
dc.identifier.doi 10.1016/j.jddst.2018.06.020
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1773224718302910
dc.subject alginic acid sodium salt en
dc.subject chitosan en
dc.subject Doxorubicin en
dc.subject doxorubicin hydrochloride en
dc.subject Folic acid en
dc.subject folic acid en
dc.subject Polysaccharides en
dc.subject Polytherapy en
dc.subject Targeting en
dc.subject Temozolomide en
dc.subject temozolomide en
dc.description.abstract A major challenge faced by researchers involved in the sphere of drug delivery is the development of innovative multidrug delivery systems. Herein, experimentation focused on preparing nanocomplexes based on chitosan and alginic acid with the purpose of allocating a combination of chemotherapeutic drugs, improving their efficacy and reducing dosage. In order to enhance targeting, conjugation with folic acid was performed. The prepared carriers exhibited a spherical shape with a diameter in the range 70–120 nm, a ζ-potential between 30 and 35 mV with good stability in human serum, and low hemolytic activity of up to 100 μg/mL. Over 800 μg of drugs per mg of carrier were loaded and released, displaying a pH-dependent trend with no physical, chemical and biological interferences, which benefited from the advantage of having full control over the given release of drug. In vitro studies performed on human epithelial cervix carcinoma cells and mouse fibroblast cells clearly demonstrated that said dual-loaded complexes showed greater cytotoxicity than single-loaded and free-drug formulations. The viability of the cells decreased, thereby confirming the primary role played by the targeting molecule. © 2018 Elsevier B.V. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1008095
utb.identifier.obdid 43879678
utb.identifier.scopus 2-s2.0-85049463356
utb.identifier.wok 000445162500009
utb.identifier.coden JDDSA
utb.source j-scopus
dc.date.accessioned 2018-08-03T12:49:40Z
dc.date.available 2018-08-03T12:49:40Z
dc.description.sponsorship VIU-RSCABS-89/2018, TPU, Tomsk Polytechnic University; NPU LO1504; 4.5924.2017, Minobrnauka, Ministry of Education and Science of the Russian Federation
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic [NPU LO1504]; Tomsk Polytechnic University [VIU-RSCABS-89/2018]; Russian Ministry of Education and Science [4.5924.2017]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Di Martino, Antonio
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Antonio Di Martino a,b,∗ , Marina E. Trusova b , Pavel S. Postnikov b , Vladimir Sedlarik a a Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic b Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Av. 30, 634050, Tomsk, Russian Federation ∗ Corresponding author. Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic. E-mail address: dimartino@utb.cz (A. Di Martino).
utb.fulltext.dates Received 16 March 2018 Received in revised form 23 June 2018 Accepted 24 June 2018 Available online 25 June 2018
utb.fulltext.references [1] Rickard Frost, Christian Grandfils, Bernardino Cerda, Bengt Kasemo, Sofia Svedhem, J. Biomaterials Nanobiotechnol. 2 (2) (2011) 180. [2] H. Eroğlu, M.K. Haidar, E. Nemutlu, Ş. Öztürk, C. Bayram, K. Ulubayram, L. Öner, Dual release behavior of atorvastatin and alpha-lipoic acid from PLGA microspheres for the combination therapy in peripheral nerve injury, J. Drug Deliv. Sci. Technol. 39 (2017) 455–466. [3] Jinxu Qi, Yao Zhang, Yi Gou, Philbert Lee, Jun Wang, Shifang Chen, Zuping Zhou, Xiaoyang Wu, Feng Yang, Hong Liang, Multidrug delivery systems based on human serum albumin for combination therapy with three anticancer agents, Mol. Pharm. 13 (9) (2016) 3098–3105. [4] R. Pushpalatha, S. Selvamuthukumar, D. Kilimozhi, Nanocarrier mediated combination drug delivery for chemotherapy–A review, J. Drug Deliv. Sci. Technol. 39 (2017) 362–371 Zhang et al., 2016. [5] Rong Zhang, Ryuta Saito, Ichiyo Shibahara, Shinichiro Sugiyama, Masayuki Kanamori, Yukihiko Sonoda, Teiji Tominaga, "Temozolomide reverses doxorubicin resistance by inhibiting P-glycoprotein in malignant glioma cells, J. Neuro Oncol. 126 (2) (2016) 235–242. [6] Yukun Wu, Jing Wu, Jing Cao, Yajie Zhang, Zhe Xu, Xiuyi Qin, Wei Wang, Zhi Yuan, Facile fabrication of poly (acrylic acid) coated chitosan nanoparticles with improved stability in biological environments, Eur. J. Pharm. Biopharm. 112 (2017) 148–154. [7] Anat Cheng, Dina Polyak, Anna Scomparin, Ronit Satchi-Fainaro, Nano-sized polymers and liposomes designed to deliver combination therapy for cancer, Curr. Opin. Biotechnol. 24 (4) (2013) 682–689. [8] Tran, Tuan Hiep, Tuan Duc Nguyen, Bijay Kumar Poudel, Hanh Thuy Nguyen, Jong Oh Kim, Chul Soon Yong, Chien Ngoc Nguyen, Development and evaluation of an artesunate-loaded chitosan-coated lipid nanocapsule as a potential drug delivery system against breast cancer, AAPS PharmSciTech 16 (6) (2015) 1307–1316. [9] Antonio Rampino, Massimiliano Borgogna, Paolo Blasi, Barbara Bellich, Attilio Cesàro, Chitosan nanoparticles: preparation, size evolution and stability, Int. J. Pharm. 455 (1) (2013) 219–228. [10] Qianjun He, Yu Gao, Lingxia Zhang, Zhiwen Zhang, Fang Gao, Xiufeng Ji, Yaping Li, Jianlin Shi, A pH-responsive, mesoporous silica nanoparticle-based multidrug delivery system for overcoming multidrug resistance, Biomaterials 32 (30) (2011) 7711–7720. [11] Changying Shi, Dandan Guo, Kai Xiao, Xu Wang, Lili Wang, Juntao Luo, A drug-specific nanocarrier design for efficient anticancer therapy, Nat. Commun. 6 (2015) 7449. [12] Jang, Seong Hoon, M. Guillaume Wientjes, Dan Lu, Jessie L-S. Au, Drug delivery and transport to solid tumors, Pharmaceut. Res. 20 (9) (2003) 1337–1350. [13] Ingo Müller, Andrew Jenner, Gernot Bruchelt, Dietrich Niethammer, Barry Halliwell, Effect of concentration on the cytotoxic mechanism of doxorubicin—apoptosis and oxidative DNA damage, Biochem. Biophys. Res. Commun. 230 (2) (1997) 254–257. [14] Oktay Tacar, Pornsak Sriamornsak, Crispin R. Dass, Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems, J. Pharm. Pharmacol. 65 (2) (2013) 157–170. [15] Regine Lüpertz, Wim Wätjen, Regine Kahl, Yvonni Chovolou, Dose-and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells, Toxicology 271 (3) (2010) 115–121. [16] C. Saikia, P. Gogoi, T.K. Maji, Chitosan: a promising biopolymer in drug delivery applications, J. Mol. Genet. Med. S 4 (2015) 006. [17] K.S. Joshy, M.A. Susan, S. Snigdha, K. Nandakumar, A.P. Laly, T. Sabu, Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery, Int. J. Biol. Macromol. 107 (2018) 929–937. [18] N.H. Patil, P.V. Devarajan, Insulin-loaded alginic acid nanoparticles for sublingual delivery, Drug Delivery 23 (2) (2016) 429–436. [19] Y.W. Huang, S. Barua, Oral drug delivery systems for gastrointestinal cancer therapy, Canc. Therapeut. Imag: Mol. Cell. Eng. Nanobiomedicine 11 (2017) 187. [20] Emilia Szymańska, Katarzyna Winnicka, Stability of chitosan — a challenge for pharmaceutical and biomedical applications, Mar. Drugs 13 (4) (2015) 1819–1846. [21] Dul Maria, Krzysztof J. Paluch, Anne Marie Healy, Astrid Sasse, Lidia Tajber, "Optimisation of the self-assembly process: production of stable, alginate-based polyelectrolyte nanocomplexes with protamine, J. Nanoparticle Res. 19 (6) (2017) 221. [22] Di Martino, Antonio, Pavel Kucharczyk, Zdenka Capakova, Petr Humpolicek, Vladimir Sedlarik, Enhancement of stability of temozolomide by loading in chitosan-carboxylated polylactide-based nanoparticles, J. Nanoparticle Res. 19 (2) (2017) 71. [23] Sun-Hee Cho, Young-Woock Noh, Mi Young Cho, Yong Taik Lim, An electro-statically self-assembled ternary nanocomplex as a non-viral vector for the delivery of plasmid DNA into human adipose-derived stem cells, Molecules 21 (5) (2016) 572. [24] Fatemeh Rezaei, Mohammad Rafienia, Hamid Keshvari, Mansooreh Sattary, Mitra Naeimi, Hossein Keyvani, Fabrication of polyhydroxybutyrate-polyethylene glycol-folic acid nanoparticles loaded with paclitaxel, Curr. Drug Deliv. 13 (1) (2016) 57–64. [25] Hua Jin, Jiang Pi, Fen Yang, Jinhuan Jiang, Xiaoping Wang, Haihua Bai, Mingtao Shao, et al., Folate-chitosan nanoparticles loaded with ursolic acid confer anti-breast cancer activities in vitro and in vivo, Sci. Rep. 6 (2016) 30782. [26] Di Martino, Alena Pavelková Antonio, Sandra Maciulyte, Saulute Budriene, Vladimir Sedlarik, Polysaccharide-based nanocomplexes for co-encapsulation and controlled release of 5-Fluorouracil and Temozolomide, Eur. J. Pharmaceut. Sci. 92 (2016) 276–286. [27] Puwang Li, Yichao Wang, Fanbo Zeng, Lijue Chen, Zheng Peng, Ling Xue Kong, Synthesis and characterization of folate-conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells, Carbohydr. Res. 346 (6) (2011) 801–806. [28] Min Huang, Chee-Wai Fong, Eugene Khor, Lee-Yong Lim, Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation, J. Contr. Release 106 (3) (2005) 391–406. [29] Chuanxu Yang, Shan Gao, Jørgen Kjems, Folic acid conjugated chitosan for targeted delivery of siRNA to activated macrophages in vitro and in vivo, J. Mater. Chem. B 2 (48) (2014) 8608–8615. [30] Sharif Abdelghany, Maha Alkhawaldeh, Hatim S. AlKhatib, Carrageenan-stabilized chitosan alginate nanoparticles loaded with ethionamide for the treatment of tuberculosis, J. Drug Deliv. Sci. Technol. 39 (2017) 442–449. [31] Yangchao Luo, Qin Wang, Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery, Int. J. Biol. Macromol. 64 (2014) 353–367. [32] L. Palanikumar, M.T. Jeena, Kibeom Kim, Jun Yong Oh, Chaekyu Kim, Myoung-Hwan Park, Ja-Hyoung Ryu, Spatiotemporally and sequentially-controlled drug release from polymer gatekeeper, hollow silica nanoparticles, Sci. Rep. 7 (2017). [33] F. Bigucci, B. Luppi, T. Cerchiara, M. Sorrenti, G. Bettinetti, L. Rodriguez, V. Zecchi, Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin, Eur. J. Pharmaceut. Sci. 35 (5) (2008) 435–441. [34] Henry S. Friedman, Tracy Kerby, Hilary Calvert, Temozolomide and treatment of malignant glioma, Clin. Canc. Res. 6 (7) (2000) 2585–2597. [35] Chen Fangfang, Guankui Wang, James I. Griffin, Barbara Brenneman, Nirmal K. Banda, V. Michael Holers, Donald S. Backos, LinPing Wu, Seyed Moein Moghimi, Dmitri Simberg, Complement proteins bind to the nanoparticle protein corona and undergo dynamic exchange in vivo, Nat. Nanotechnol. 12 (4) (2017) 387–393.
utb.fulltext.sponsorship This work was funded by the Ministry of Education, Youth and Sports of the Czech Republic (grant no. NPU LO1504), Tomsk Polytechnic University (project VIU-RSCABS-89/2018) and Russian Ministry of Education and Science (Scientific Program no. 4.5924.2017).
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, Czech Republic; Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Av. 30, Tomsk, Russian Federation
utb.fulltext.projects LO1504
utb.fulltext.projects VIU-RSCABS-89/2018
utb.fulltext.projects 4.5924.2017
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam