Publikace UTB
Repozitář publikační činnosti UTB

Biogenic amine production by nonstarter strains of Lactobacillus curvatus and Lactobacillus paracasei in the model system of Dutch-type cheese

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Biogenic amine production by nonstarter strains of Lactobacillus curvatus and Lactobacillus paracasei in the model system of Dutch-type cheese en
dc.contributor.author Pachlová, Vendula
dc.contributor.author Buňková, Leona
dc.contributor.author Flasarová, Radka
dc.contributor.author Salek, Richardos-Nicolaos
dc.contributor.author Dlabajová, Andrea
dc.contributor.author Butor, Irena
dc.contributor.author Buňka, František
dc.relation.ispartof LWT - Food Science and Technology
dc.identifier.issn 0023-6438 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 97
dc.citation.spage 730
dc.citation.epage 735
dc.type article
dc.language.iso en
dc.publisher Academic Press
dc.identifier.doi 10.1016/j.lwt.2018.07.045
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0023643818306285
dc.subject biogenic amine en
dc.subject nonstarters en
dc.subject cheese ripening en
dc.description.abstract The objective of the study was to assess the development of the biogenic amine content in model cheese samples individually inoculated with two biogenic amine producing non-starter lactic acid bacteria strains of Lactobacillus curvatus subsp. curvatus (DEPE T3 and DEPE T36) and two biogenic amine producing non-starter lactic acid bacteria strains of Lactobacillus paracasei (DEPE T51 and DEPE T52) over the course of a 90 day storage period (10 ± 1 °C). During the entire ripening period, the dominant biogenic amine was tyramine. After just two months of ripening, tyramine concentration 167 mg/kg was detected in the model cheeses with the DEPE T3 strain (moreover a total biogenic amine concentration was 220 mg/kg), whilst in the case of the DEPE T36 strain it was even 211 mg/kg of tyramine (sum of biogenic amine was 302 mg/kg). In the samples with the added DEPE T51 and DEPE T52 strains, tyramine concentration after 90 days of ripening almost reached the level of 50 mg/kg. © 2018 Elsevier Ltd en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1008146
utb.identifier.obdid 43878969
utb.identifier.scopus 2-s2.0-85051106267
utb.identifier.wok 000445715600101
utb.identifier.coden LBWTA
utb.source j-scopus
dc.date.accessioned 2018-08-29T08:26:55Z
dc.date.available 2018-08-29T08:26:55Z
dc.description.sponsorship GACR, Grantová Agentura České Republiky; QJ1210300, RRA, National Radio Research Agency; IGA/FT/2018/003, GACR, Grantová Agentura České Republiky; 17-09594S, GACR, Grantová Agentura České Republiky; IGA/FT/2017/003, GACR, Grantová Agentura České Republiky
dc.description.sponsorship National Agency for Agriculture Research [QJ1210300]; Grant Agency of the Czech Republic (GAOR) [17-09594S]; Internal Grant Agencies of the Tomas Bata University in Zlin [IGA/FT/2018/003, IGA/FT/2017/003]
utb.contributor.internalauthor Pachlová, Vendula
utb.contributor.internalauthor Buňková, Leona
utb.contributor.internalauthor Flasarová, Radka
utb.contributor.internalauthor Salek, Richardos-Nicolaos
utb.contributor.internalauthor Dlabajová, Andrea
utb.contributor.internalauthor Butor, Irena
utb.contributor.internalauthor Buňka, František
utb.fulltext.affiliation Vendula Pachlová a,∗ , Leona Buňková b , Radka Flasarová a , Richardos-Nikolaos Salek a , Andrea Dlabajová a , Irena Butor b , František Buňka a a Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, Czech Republic b Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, Czech Republic ∗ Corresponding author. Tomas Bata University in Zlin, Faculty of Technology, Department of Food Technology, nám. T. G. Masaryka 5555, 760 01, Zlin, Czech Republic. E-mail address: pachlova@utb.cz (V. Pachlová).
utb.fulltext.dates Received 2 January 2018 Received in revised form 16 July 2018 Accepted 24 July 2018 Available online 25 July 2018
utb.fulltext.references Agresti, A. (1984). Analysis of ordinal categorical data. New York: John Wiley & Sons. Beresford, T. P. (2003). Non-starter LAB (NSLAB) and cheese quality. In G. Smit (Ed.). Dairy processing: Improving quality (pp. 448–469). Cambridge, UK: Woodhead Publishing Limited. Bluma, A., & Ciprovica, I. (2016). Diversity of lactic acid bacteria in raw milk. In S. Treija, & Skunjeniece (Vol. Eds.), Research for rural development: Vol. 1, (pp. 157–161). ten Brink, B., Damink, C., Joosten, H. M. L. J., & Huis in’t Veld, J. H. J. (1990). Occurrence and formation of biologically active amines in foods. International Journal of Food Microbiology, 11, 73–84. Buňková, L., Buňka, F., Hlobilová, M., Vaňátková, Z., Nováková, D., & Drab, V. (2009). Tyramine production of technological important strains of Lactobacillus, Lactococcus and Streptococcus. European Food Research and Technology, 229, 533–538. Buňková, L., Buňka, F., Mantlová, G., Čablová, A., Sedláček, I., Švec, P., et al. (2010). The effect of ripening and storage conditions on the distribution of tyramine, putrescine and cadaverine in Edam-cheese. Food Microbiology, 27, 880–888. Combarros-Fuertes, P., Fernández, D., Arenas, R., Diezhandino, I., Tornadijo, M. E., & Fresno, J. M. (2016). Biogenic amines in Zamorano cheese: Factors involved in their accumulation. Journal of the Science of Food and Agriculture, 96, 295–305. Coppola, R., Nanni, M., Iorizzo, M., Sorrentino, A., Sorrentino, E., & Grazia, L. (1997). Survey of lactic acid bacteria isolated during the advanced stages of the ripening of Parmigiano Reggiano cheese. Journal of Dairy Research, 64, 305–310. Dadáková, E., Křížek, P., & Pelikánová, T. (2009). Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC). Food Chemistry, 116, 365–370. Donnelly, C. W. (2014). Cheese and microbes. Washington, District of Columbia: ASM Press ISBN 978-1-55581-859-3. EFSA (European Food Safety Authority) (2011). Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal, 9(10), 2393. Fenelon, M. A., & Guinee, T. P. (2000). Primary proteolysis and textural changes during ripening in Cheddar cheeses manufactured to different fat contents. International Dairy Journal, 10, 151–158. Fitzsimons, N. A., Cogan, T. M., Condon, S., & Beresford, T. (1999). Phenotypic and genotypic characterization of non-starter lactic acid bacteria in mature Cheddar cheese. Applied and Environmental Microbiology, 65, 3418–3426. Flasarová, R., Pachlová, V., Buňková, L., Menšíková, A., Georgová, N., Dráb, V., et al. (2016). Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese. Food Chemistry, 194, 68–75. Fox, P. F., Guinee, T. P., Cogan, T., & McSweeney, P. L. H. (2000). Fundamentals of cheese science. Gaithersburg: Aspen Publication. Fox, P. F., McSweeney, P. L. H., Cogan, T. M., & Guinee, T. P. (2004). Cheese: Chemistry, physics and microbiology. Volume 1 general aspects (3rd ed.). London: Elsevier Academic Press. Gardini, F., Özogul, Y., Suzzi, G., Tabanelli, G., & Özogul, F. (2016). Technological factors affecting biogenic amine content in foods: A review. Frontiers in Microbiology, 7, 1–14. Gobbetti, M., Angelis, M., DiCagno, R., & Rizzello, C. (2007). The relative contributions of starter cultures and non-starter bacteria to the flavour of cheese. In B. C. Weimer (Ed.). Improving the flavour of cheese (pp. 121–156). Cambridge: CRC Press, Woodhead Publishing Limited. Halász, A., Baráth, Á., Simon-Sarkadi, L., & Holzapfel, W. (1994). Biogenic amines and their production by microorganisms in food. Trends in Food Science & Technology, 51, 42–49. Jordan, K. N., & Cogan, T. M. (1999). Heat resistance of Lactobacillus spp. isolated from Cheddar cheese. Letters in Applied Microbiology, 29, 136–140. Lolkema, J. S., Poolman, B., & Konings, W. N. (1995). Role of scalar protons inmetabolic energy generation in lactic acid bacteria. Journal of Bioenergetics and Biomembranes, 4, 467–473. Lorencová, E., Buňková, L., Matoulková, D., Dráb, V., Pleva, P., Kubáň, V., et al. (2012). Production of biogenic amines by lactic acid bacteria and bifidobacteria isolated from dairy products and beer. International Journal of Food Science and Technology, 47, 2086–2091. McSweeney, P. L. H., & Sousa, M. J. (2000). Biochemical pathways for the production of flavour compounds in cheese during ripening: A review. Le Lait, 80, 293–324. McSweeney, P. L. H., Walsh, E. M., Fox, P. E., Cogan, M., Drinan, F. D., & Castelo-Gonzalez, M. (1999). A procedure for the manufacture of Cheddar cheese under controlled bacteriological conditions and the effect of adjunct lactobacilli on cheese quality. Irish Journal of Agricultural & Food Research, 33, 183–192. Montel, M. C., Buchin, S., Mallet, A., Delbes-Paus, C., Vuitton, D., & Desmasures, N. (2014). Traditional cheeses: Rich and diverse microbiota with associated benefits. International Journal of Food Microbiology, 177, 136–154. Østlie, H. M., Eliassen, L., Florvaag, A., & Skeie, S. (2004). Phenotypic and PCR-based characterization of the microflora in Norvegia cheese during ripening. International Journal of Food Microbiology, 94, 287–299. Pachlová, V., Buňka, F., Buňková, L., Weiserová, E., Budinský, P., Žaludek, M., et al. (2011). The effect of three different ripening/storage conditions on the distribution of selected parameters in individual parts of Dutch-type cheese. International Journal of Food Science and Technology, 46, 101–108. Pachlová, V., Buňka, F., Flasarová, R., Válková, P., & Buňková, L. (2012). The effect of elevated temperature on ripening of Dutch type cheese. Food Chemistry, 132, 1846–1854. Porcellato, D., Østlie, H. M., Brede, M. E., Martinovic, A., & Skeie, S. B. (2013). Dynamics of starter, adjunct non-starter lactic acid bacteria and propionic acid bacteria in low-fat and full-fat Dutch-type cheese. International Dairy Journal, 33, 104–111. Silla Santos, M. H. (1996). Biogenic amines: Their importance in foods. International Journal of Food Microbiology, 29, 213–231. Smělá, D., Pechová, P., Komprda, T., Klejdus, B., & Kubáň, V. (2004). Chromatographic determination of biogenic amines in dry salami during the fermentation and storage (in Czech). Chemical Papers, 98, 432–437. Sousa, M. J., Ardo, Y., & McSweeney, P. L. H. (2001). Advances in the study of proteolysis during cheese ripening. International Dairy Journal, 11, 327–345. Spano, G., Russo, P., Lonvaud-Funel, A., Lucas, P., Alexandre, H., Grandvalet, C., et al. (2010). Biogenic amines in fermented foods. European Journal of Clinical Nutrition, 64, 95–100. Wouters, J. T. M., Ayad, E. H. E., Hugenholtz, J., & Smit, G. (2002). Microbes from raw milk for fermented dairy products. International Dairy Journal, 12, 91–109. Zuljan, F. A., Mortera, P., Alarcón, S. H., Blancato, V. S., Espariz, M., & Magni, C. (2016). Lactic acid bacteria decarboxylation reactions in cheese. International Dairy Journal, 62, 53–62.
utb.fulltext.sponsorship This work was supported by The National Agency for Agriculture Research, project No. QJ1210300, the Grant Agency of the Czech Republic (GAČR No. 17-09594S) and the Internal Grant Agencies of the Tomas Bata University in Zlín (projects IGA/FT/2018/003 and IGA/FT/2017/003).
utb.wos.affiliation [Pachlova, Vendula; Flasarova, Radka; Salek, Richardos-Nikolaos; Dlabajova, Andrea; Bunka, Frantisek] Tomas Bata Univ Zlin, Fac Technol, Dept Food Technol, Nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Bunkova, Leona; Butor, Irena] Tomas Bata Univ Zlin, Fac Technol, Dept Environm Protect Engn, Nam TG Masaryka 5555, Zlin, Czech Republic
utb.scopus.affiliation Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, Czech Republic; Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, Czech Republic
utb.fulltext.projects QJ1210300
utb.fulltext.projects GAČR 17-09594S
utb.fulltext.projects IGA/FT/2018/003
utb.fulltext.projects IGA/FT/2017/003
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam