Kontaktujte nás | Jazyk: čeština English
dc.title | The effect of melting conditions on the iPB-1 structure and the II → I phase transformation rate | en |
dc.contributor.author | Kaszonyiová, Martina | |
dc.contributor.author | Rybnikář, František | |
dc.contributor.author | Kubišová, Milena | |
dc.relation.ispartof | Polymer Testing | |
dc.identifier.issn | 0142-9418 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 71 | |
dc.citation.spage | 1 | |
dc.citation.epage | 5 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.identifier.doi | 10.1016/j.polymertesting.2018.08.017 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S014294181830285X | |
dc.subject | isotactic polybutene | en |
dc.subject | 1, phase transformation type | en |
dc.subject | crystallinity | en |
dc.subject | morphology | en |
dc.description.abstract | The melting conditions, mainly the temperature and time, influence a polymer samples characteristics. Changes in normal or repeated melting procedures can influence the crystallinity, phase, structure, phase transformation rate and type of polymorphous polymers as was demonstrated here on a sample of isotactic polybutene-1. In the treatment temperature range 120–130 °C and 5 min treatment time the phase II → I transformation type after crystallization was neutral (N), which was faster than the type M (slow transformation type), which took place when the treatment temperature was 160 °C or higher. The change from N to M transformation type involved the formation of an induction period. During this period some configuration or crystal changes can take place in the sample, and the newly formed structures block the phase transformation nuclei until all of the newly formed blocking structures have reacted with the transformation nuclei and then the formation of phase I nuclei and their growth can start again. Based on the results here, as an initial standard thermal history for molded iPB-1 samples, avoiding the M transformation type, holding 5 min at 120–130 °C, followed by free cooling to room temperature and pressure is recommended. © 2018 Elsevier Ltd | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1008160 | |
utb.identifier.obdid | 43879071 | |
utb.identifier.scopus | 2-s2.0-85051648720 | |
utb.identifier.wok | 000449134300002 | |
utb.identifier.coden | POTED | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-08-30T13:31:15Z | |
dc.date.available | 2018-08-30T13:31:15Z | |
dc.description.sponsorship | IGA/FT/2018/004 | |
dc.description.sponsorship | Tomas Bata University in Zlin, Czech Republic [IGA/FT/2018/004] | |
utb.contributor.internalauthor | Kaszonyiová, Martina | |
utb.contributor.internalauthor | Rybnikář, František | |
utb.contributor.internalauthor | Kubišová, Milena | |
utb.fulltext.affiliation | M. Kaszonyiová a,* , F. Rybnikář a , M. Kubišová b a Department of Polymer Engineering, Tomas Bata University in Zlin, Vavrečkova 275, Zlín, 760 01, Czech Republic b Department of Production Engineering, Tomas Bata University in Zlin, Vavrečkova 275, Zlín, 760 01, Czech Republic * Corresponding author. E-mail address: mhribova@utb.cz (M. Kaszonyiová). | |
utb.fulltext.dates | Received 21 February 2018 Received in revised form 22 June 2018 Accepted 16 August 2018 Available online 17 August 2018 | |
utb.fulltext.references | [1] W. Chen, W. Lihui, Ch Liang, Q. Zeming, a L. Liangbin, Influence of thermal history on crystalline morphologies of isotactic polypropylene in its miscible blends with polybutene-, J.App.Polym. Sci. 2016 (133) (2016) 43282–43290, https://doi.org/10.1002/app.4328. [2] S. Vyazovkin, N. Koga, a Ch Schick, Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications vol. 2, Elsevier, 2018, p. 69 ISBN 9780444640635. [3] J. Boon, G. Challa a, D.W. Van Krevelen, Crystallization kinetics of isotactic polystyrene. II. Influence of thermal history on number of nuclei, J. Polym. Sci., Part B: Polym. Phys. 6 (11) (1968) 1835–1851 pol.1968.160061102. [4] M. Kaszonyiova, F. Rybnikar, P.H. Geil, Polymorphism of isotactic poly(butene-1), J. Macromol. Sci. Part B, Polym. Phys. B44 (2005) 377–396. [5] C. Silvestre, M.L. Di Lorenzo, E. Di Pace, Crystallization of polyolefines, in: C. Vasile (Ed.), Handbook of Polyolefines, Marcel Dekker, Inc., New York, 2000, pp. 223–248 [(Chapter 9)]. [6] S. Kopp, J.C. Wittmann, B. Lotz, Phase II to phase I crystal transformation in polybutene-1 single crystals: a reinvestigation, J. Mater. Sci. 29 (1994) 6159–6166, https://doi.org/10.1007/BF00354556. [7] J. Powers, J.D. Hoffman, J.J. Weeks, F.A. Quinn, Crystallization kinetics and polymorphic transformations in polybutene-1, J. Res. NBS, Section A- Phys. Chem. (1965) 335–345. A 69. [8] B. ZHANG, D.C. YANG, S. YAN, Direct formation of form I poly(1-butene) single crystals from melt crystallization in ultrathin films, J. Polym. Sci., Part B – Polymer Physiscs 40 (2002) 2641–2645. [9] M. Kaszonyiova, F. Rybnikar, The three processes of phase II - I transformation of isotactic polybutene - 1, J. Macromol. Sci. Part B, Polym. Phys. (2018) 278–286 B. 57. [10] M. Hribova, F. Rybnkar, D. Manas, The effect of electron irradiation on polybutene-1 and its ethylene copolymers, Acta Phys. Pol., A 122 (2012) 569–571. [11] R. Androsch, M.L. Di Lorenzo, Ch Schick, B. Wunderlich, Mesophases in polyethylene, polypropylene, and poly(1-butene), Polymer 51 (21) (2010) 4639–4662. [12] I.D. Rubin, Effect of some additives on the crystalline transformations of polybutene-1, J. Polym. Sci. Part A 3 (11) (1965) 3803–3813. [13] G.C. Alfonso, F. Azzurri, M. Castellano, Analysis of calorimetric curves detected during the polymorphic transformation of isotactic polybutene-1, J. Therm. Anal. Calorim. 66 (2001) 197–207. [14] K. Lu, D. Yang, A. Dahoun, Stabilization of metastable phase I of isotactic poly-butene-1 by coated carbon, Polym. Bull. 58 (2007) 731–736. [15] M. Kaszonyiova, F. Rybnikar, P.H. Geil, J. Macromol. Sci. Part B, Polym. Phys. B44 (2004) 1095–1144. [16] C.D. Armeniades, E. Baer, Effect of pressure on the polymorphism of melt crystallized Polybutene-1, J. Macromol. Sci. Part B., Polym. Phys. B1 (1967) 309–334. [17] M. Kaszonyiova, F. Rybnikar, L. Lapcik, D. Manas, Effects of beta irradiation, copolymers, and blends on the transformation rate of Polybutene-1, J. Macromol. Sci. Part B. Polym. Phys. 51 (2012) 926–945, https://doi.org/10.1080/00222348.2011.610253. [18] M. Hribova, F. Rybnikar, J. Jakubicek, The effect of some physical factors on the phase structure of isotatic polybutene-1, Mater. Struct. 22 (3) (2015) 21–25. [19] W.K. Busfield, G.S. Watson, Free radical activity in gamma-irradiated polyethylene film, drawn tape and ultra-high-modulus fibres determined by grafting performance, Polym. Int. 54 (2005) 1047–1054. [20] M. Kaszonyiova, F. Rybnikar, P.H. Geil, Structure and morphology of isotactic poly (butene-1) phase III, J. Macromol. Sci. Part B Polym. Phys. 46 (2006) 195–205. [21] Polybutene-1. LyondellBasell [online]. [cit. 2018-04-05]. Available at: https://www.lyondellbasell.com/en/products-technology/polymers/resin-type/polybutene-1/. [22] I. Stolte, R. Androsch, Kinetics of the melt – form II phase transition in isotactic random butene-1/ethylene copolymers, Polymer 54 (26) (2013) 7033–7040. [23] L.E. Alexander, X-Ray Diffraction Methods in Polymer Science, Wiley-Interscience, New York, 1969, p. 582. [24] K.L. Copeland, G.S. Tschumper, Hydrocarbon/Water interactions: encouraging energetics and structures from DFT but disconcerting discrepancies for Hessian indices, J. Chem. Theor. Comput. 8 (2012) 1646–1656. [25] S. Ohki, N. Fukuda, Interaction energy between water and hydrocarbon phases, J. Colloid Interface Sci. 27 (1968) 208–215. | |
utb.fulltext.sponsorship | This work was supported by a grant from the Tomas Bata University in Zlin, Czech Republic IGA/FT/2018/004 and financed from the funds for specific academic research. | |
utb.scopus.affiliation | Department of Polymer Engineering, Tomas Bata University in Zlin, Vavrečkova 275, Zlín, Czech Republic; Department of Production Engineering, Tomas Bata University in Zlin, Vavrečkova 275, Zlín, Czech Republic | |
utb.fulltext.projects | IGA/FT/2018/004 |