Kontaktujte nás | Jazyk: čeština English
dc.title | Anti-corrosive and oil sensitive coatings based on epoxy/polyaniline/magnetite-clay composites through diazonium interfacial chemistry | en |
dc.contributor.author | Jlassi, Khouloud | |
dc.contributor.author | Radwan, A. Bahgat | |
dc.contributor.author | Sadasivuni, Kishor Kumar | |
dc.contributor.author | Mrlík, Miroslav | |
dc.contributor.author | Abdullah, Aboubakr M. | |
dc.contributor.author | Chehimi, Mohamed M. | |
dc.contributor.author | Krupa, Igor | |
dc.relation.ispartof | Scientific Reports | |
dc.identifier.issn | 2045-2322 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 8 | |
utb.relation.issue | 1 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Nature Publishing Group | |
dc.identifier.doi | 10.1038/s41598-018-31508-0 | |
dc.relation.uri | https://www.nature.com/articles/s41598-018-31508-0 | |
dc.description.abstract | Epoxy polymer nanocomposites filled with magnetite (Fe3O4) clay (B), named (B-DPA-PANI@Fe3O4) have been prepared at different filler loading (0.1, 0.5, 1, 3, 5 wt. %). The surface modification of clay by polyaniline (PANI) is achieved in the presence of 4-diphenylamine diazonium salt (DPA). The effects of the nanofiller loading on Tensile, mechanical and dielectric properties were systematically studied. Improved properties was highlighted for all reinforced samples. The addition of only 3 wt. % of the filler enhanced the tensile strength of the composites by 256%, and the glass transition temperature Tg by 37%. The dielectric spectra over a broad frequency showed a robust interface between the hybrid (B-DPA-PANI@Fe3O4) fillers and epoxy matrix. The results showed most significant improvement in corrosion inhibition using electrochemical impedance spectroscopy (EIS) in 3.5 wt % NaCl, as well as a significant response in oil sensing test. High charge transfer resistance of 110 × 106 Ω.cm2 using 3-wt % of filler was noted compared to 0.35 × 106 Ω.cm2 for the pure epoxy. The results obtained herein will open new routes for the preparation of efficient anticorrosion sensor coatings. © 2018, The Author(s). | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1008193 | |
utb.identifier.obdid | 43879691 | |
utb.identifier.scopus | 2-s2.0-85052916833 | |
utb.identifier.wok | 000443802200030 | |
utb.identifier.pubmed | 30190528 | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-10-03T11:13:01Z | |
dc.date.available | 2018-10-03T11:13:01Z | |
dc.description.sponsorship | NPRP Award from the Qatar National Research Fund (a member of Qatar Foundation) [8-878-1-172] | |
dc.rights | Creative Commons Attribution License 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Mrlík, Miroslav | |
utb.fulltext.affiliation | Khouloud Jlassi1, A. Bahgat Radwan1, Kishor Kumar Sadasivuni1, Miroslav Mrlik2, Aboubakr M. Abdullah http://orcid.org/0000-0001-8406-9782 1, Mohamed M. Chehimi3 & Igor Krupa1,4 1 Center for Advanced Materials, Qatar University, P. O. Box 2713, Doha, Qatar. 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01, Zlin, Czech Republic. 3 University Paris Est, CNRS, UMR7182, ICMPE, UPEC, F-94320, Thais, France. 4 QAPCO Polymer Chair, Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar. Correspondence and requests for materials should be addressed to K.J. (email: khouloud.jlassi@qu.edu.qa) or I.K. (email: igor.krupa@qu.edu.qa) | |
utb.fulltext.dates | Received: 22 March 2018 Accepted: 10 August 2018 Published online: 06 September 2018 | |
utb.fulltext.references | 1. Jlassi, K. et al. Poly (glycidyl methacrylate)-grafted clay nanofiller for highly transparent and mechanically robust epoxy composites. European Polymer Journal 72, 89–101 (2015). 2. Jlassi, K. et al. Emerging clay-aryl-gold nanohybrids for efficient electrocatalytic proton reduction. Energy Conversion and Management 168, 170–177 (2018). 3. Ummartyotin, S. & Pechyen, C. Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. Renewable and Sustainable Energy Reviews 62, 654–664 (2016). 4. Thirugnanam, K., Kerk, S. K., Yuen, C., Liu, N. & Zhang, M. Energy Management for Renewable Microgrid in Reducing Diesel Generators Usage With Multiple Types of Battery. IEEE Trans. Ind. Electron. 65, 6772–6786, https://doi.org/10.1109/tie.2018.2795585 (2018). 5. Dufresne, A. Polymer nanocomposites from biological sources. Encyclopedia of nanoscience and nanotechnology 21, 219–250 (2010). 6. Jlassi, K. et al. Bentonite-decorated calix [4] arene: A new, promising hybrid material for heavy-metal removal. Applied Clay Science 161, 15–22 (2018). 7. Adamiano, A. et al. Biomineralization of a titanium-modified hydroxyapatite semiconductor on conductive wool fibers. Journal of Materials Chemistry B 5, 7608–7621, https://doi.org/10.1039/c7tb00211d (2017). 8. Tang, B. et al. Porous coral reefs-like MoS2/nitrogen-doped bio-carbon as an excellent Pt support/co-catalyst with promising catalytic activity and CO-tolerance for methanol oxidation reaction. Electrochim. Acta 246, 517–527, https://doi.org/10.1016/j.electacta.2017.06.052 (2017). 9. Darder, M., Aranda, P. & Ruiz‐Hitzky, E. Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials 19, 1309–1319 (2007). 10. Lopez-Cuesta, J.-M. In Clay-Polymer Nanocomposites 443–473 (Elsevier, 2017). 11. Alexandre, M. & Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports 28, 1–63 (2000). 12. Panwar, V. & Pal, K. In Clay-Polymer Nanocomposites 413–441 (Elsevier, 2017). 13. Jlassi, K., Krupa, I. & Chehimi, M. M. In Clay-Polymer Nanocomposites 1–28 (Elsevier, 2017). 14. Jlassi, K. et al. Novel, ternary clay/polypyrrole/silver hybrid materials through in situ photopolymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 439, 193–199 (2013). 15. Rakhsh, F., Golchin, A., Al Agha, A. B. & Alamdari, P. Effects of exchangeable cations, mineralogy and clay content on the mineralization of plant residue carbon. Geoderma 307, 150–158, https://doi.org/10.1016/j.geoderma.2017.07.010 (2017). 16. Salmi, Z., Benzarti, K. & Chehimi, M. M. Diazonium Cation-Exchanged Clay: An Efficient, Unfrequented Route for Making Clay/ Polymer Nanocomposites. Langmuir 29, 13323–13328, https://doi.org/10.1021/la402710r (2013). 17. Jlassi, K., Benna‐Zayani, M., Chehimi, M. M. & Yagci, Y. Efficient photoinduced In situ preparation of clay/poly (glycidyl methacrylate) nanocomposites using hydrogen‐donor silane. Journal of Polymer Science Part A: Polymer Chemistry 53, 800–808 (2015). 18. Jlassi, K. et al. Exfoliated clay/polyaniline nanocomposites through tandem diazonium cation exchange reactions and in situ oxidative polymerization of aniline. RSC Advances 4, 65213–65222 (2014). 19. Saad, A., Jlassi, K., Omastová, M. & Chehimi, M. M. In Clay-Polymer Nanocomposites 199–237 (Elsevier, 2017). 20. Zhou, T., Li, C., Jin, H., Lian, Y. & Han, W. EffectiveAdsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline Hybrid Nanotubes. ACS Applied Materials & Interfaces 9, 6030–6043, https://doi.org/10.1021/acsami.6b14079 (2017). 21. Yoon, H. Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3, 524–549 (2013). 22. Li, J., Shao, Z., Chen, C. & Wang, X. Hierarchical GOs/Fe3O4/PANI magnetic composites as adsorbent for ionic dye pollution treatment. RSC Advances 4, 38192–38198 (2014). 23. Kim, M., Cho, S., Song, J., Son, S. & Jang, J. Controllable Synthesis of Highly Conductive Polyaniline Coated Silica Nanoparticles Using Self-Stabilized Dispersion Polymerization. ACS Applied Materials & Interfaces 4, 4603–4609, https://doi.org/10.1021/am300979s (2012). 24. Jlassi, K. et al. Clay/polyaniline hybrid through diazonium chemistry: conductive nanofiller with unusual effects on interfacial properties of epoxy nanocomposites. Langmuir 32, 3514–3524 (2016). 25. Haldar, I., Biswas, M., Nayak, A. & Ray, S. S. Dielectric properties of polyaniline-montmorillonite clay hybrids. Journal of nanoscience and nanotechnology 13, 1824–1829 (2013). 26. Reena, V. L., Pavithran, C., Verma, V. & Sudha, J. D. Nanostructured Multifunctional Electromagnetic Materials from the Guest-Host Inorganic-Organic Hybrid Ternary System of a Polyaniline-Clay-Polyhydroxy Iron Composite: Preparation and Properties. J. Phys. Chem. B 114, 2578–2585, https://doi.org/10.1021/jp907778g (2010). 27. Kalaivasan, N. Corrosion Protection Aspects of Mechanochemically Synthesized Polyaniline/MMT Clay Nanocomposites. Res. J. Pharm. Biol. Chem. Sci. 6, 1301–1307 (2015). 28. Akbarinezhad, E., Ebrahimi, M., Sharif, F. & Ghanbarzadeh, A. Evaluating protection performance of zinc rich epoxy paints modified with polyaniline and polyaniline-clay nanocomposite. Progress in Organic Coatings 77, 1299–1308, https://doi.org/10.1016/j.porgcoat.2014.04.009 (2014). 29. Zhang, Y. J., Shao, Y. W., Zhang, T., Meng, G. Z. & Wang, F. H. High corrosion protection of a polyaniline/organophilic montmorillonite coating for magnesium alloys. Progress in Organic Coatings 76, 804–811, https://doi.org/10.1016/j.porgcoat.2013.01.008 (2013). 30. Kim, S. et al. A Solution-Processable, Nanostructured, and Conductive Graphene/Polyaniline Hybrid Coating for Metal-Corrosion Protection and Monitoring. Scientific Reports 7, 15184, https://doi.org/10.1038/s41598-017-15552-w (2017). 31. Bhanvase, B. et al. Ultrasound assisted synthesis of PANI/ZnMoO4 nanocomposite for simultaneous improvement in anticorrosion, physico-chemical properties and its application in gas sensing. Ultrasonics sonochemistry 24, 87–97 (2015). 32. Gupta, N., Sharma, S., Mir, I. A. & Kumar, D. Advances in sensors based on conducting polymers. Journal of Scientific & Industrial Research 65, 549–557 (2006). 33. Li, Y. et al. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments. Nano Letters 17, 5171–5178, https://doi.org/10.1021/acs.nanolett.7b02630 (2017). 34. Long, J. W., Rhodes, C. P., Young, A. L. & Rolison, D. R. Ultrathin, Protective Coatings of Poly(o-phenylenediamine) as Electrochemical Proton Gates: Making Mesoporous MnO2 Nanoarchitectures Stable in Acid Electrolytes. Nano Letters 3, 1155–1161, https://doi.org/10.1021/nl0343598 (2003). 35. Lv, L., Yuan, S., Zheng, Y., Liang, B. & Pehkonen, S. O. Surface Modification of Mild Steel with Thermally Cured Antibacterial Poly(vinylbenzyl chloride)–Polyaniline Bilayers for Effective Protection against Sulfate Reducing Bacteria Induced Corrosion. Industrial & Engineering Chemistry Research 53, 12363–12378, https://doi.org/10.1021/ie501654b (2014). 36. Chen, Y., Kang, E. T., Neoh, K. G. & Huang, W. Electroless Metallization of Glass Surfaces Functionalized by Silanization and Graft Polymerization of Aniline. Langmuir 17, 7425–7432, https://doi.org/10.1021/la010866y (2001). 37. Abdullayev, E., Joshi, A., Wei, W., Zhao, Y. & Lvov, Y. Enlargement of Halloysite Clay Nanotube Lumen by Selective Etching of Aluminum Oxide. ACS Nano 6, 7216–7226, https://doi.org/10.1021/nn302328x (2012). 38. Njoku, D. I., Cui, M., Xiao, H., Shang, B. & Li, Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Scientific Reports 7, 15597, https://doi.org/10.1038/s41598-017-15845-0 (2017). 39. Navarchian, A. H., Joulazadeh, M. & Karimi, F. Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Progress in Organic Coatings 77, 347–353 (2014). 40. Lv, L.-P. et al. Redox responsive release of hydrophobic self-healing agents from polyaniline capsules. Journal of the American Chemical Society 135, 14198–14205 (2013). 41. Mostafaei, A. & Nasirpouri, F. Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings: Synthesis, characterization and corrosion protection performance of conducting paints. Prog. Org. Coat. 77, 146–159 (2014). 42. Wang, W. et al. ConductivePolymer–Inorganic Hybrid Materials through Synergistic Mutual Doping of the Constituents. ACS Applied Materials & Interfaces 9, 27964–27971, https://doi.org/10.1021/acsami.7b09270 (2017). 43. Balaskas, A., Kartsonakis, I., Tziveleka, L.-A. & Kordas, G. Improvement of anti-corrosive properties of epoxy-coated AA 2024-T3 with TiO2 nanocontainers loaded with 8-hydroxyquinoline. Prog. Org. Coat. 74, 418–426 (2012). 44. Huang, T.-C. et al. Advanced anticorrosive coatings prepared from electroactive epoxy–SiO2 hybrid nanocomposite materials. Electrochim. Acta 56, 6142–6149 (2011). 45. Gu, H. et al. Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites. ACS applied materials & interfaces 4, 5613–5624 (2012). 46. Javidparvar, A., Ramezanzadeh, B. & Ghasemi, E. The effect of surface morphology and treatment of Fe3O4 nanoparticles on the corrosion resistance of epoxy coating. Journal of the Taiwan Institute of Chemical Engineers 61, 356–366 (2016). 47. Behzadnasab, M., Mirabedini, S. & Esfandeh, M. Corrosion protection of steel by epoxy nanocomposite coatings containing various combinations of clay and nanoparticulate zirconia. Corrosion Science 75, 134–141 (2013). 48. Zhang, D. Preparation of core–shell structured alumina–polyaniline particles and their application for corrosion protection. J. Appl. Polym. Sci. 101, 4372–4377 (2006). 49. Zhang, X., Wang, F. & Du, Y. Effect of nano-sized titanium powder addition on corrosion performance of epoxy coatings. Surface and Coatings Technology 201, 7241–7245, https://doi.org/10.1016/j.surfcoat.2007.01.042 (2007). 50. Behzadnasab, M., Mirabedini, S. M., Kabiri, K. & Jamali, S. Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corrosion Science 53, 89–98, https://doi.org/10.1016/j.corsci.2010.09.026 (2011). 51. Sharifi Golru, S., Attar, M. M. & Ramezanzadeh, B. Studying the influence of nano-Al2O3 particles on the corrosion performance and hydrolytic degradation resistance of an epoxy/polyamide coating on AA-1050. Progress in Organic Coatings 77, 1391–1399, https://doi.org/10.1016/j.porgcoat.2014.04.017 (2014). 52. Abu-Thabit, N. Y. & Makhlouf, A. S. H. In Handbook of Smart Coatings for Materials Protection 459–486 (Woodhead Publishing, 2014). 53. Nguyen, P. T. et al. Experiments with organic field effect transistors based on polythiophene and thiophene oligomers. Electrochimica Acta 50, 1757–1763, https://doi.org/10.1016/j.electacta.2004.10.062 (2005). 54. Nikinmaa, M. & Nikinmaa, M. What Causes Aquatic Contamination? (Academic Press Ltd-Elsevier Science Ltd, 2014). 55. Lacerda, L. D., Campos, R. C. & Santelli, R. E. Metals in water, sediments, and biota of an offshore oil exploration area in the Potiguar Basin, Northeastern Brazil. Environ. Monit. Assess. 185, 4427–4447, https://doi.org/10.1007/s10661-012-2881-9 (2013). 56. Arelli, A. et al. Optimization of washing conditions with biogenic mobilizing agents for marine fuel-contaminated beach sands. New Biotech. 43, 13–22, https://doi.org/10.1016/j.nbt.2017.12.007 (2018). 57. Bourgeois, W., Romain, A.-C., Nicolas, J. & Stuetz, R. M. The use of sensor arrays for environmental monitoring: interests and limitations. Journal of Environmental Monitoring 5, 852–860 (2003). 58. Haynes, A. & Gouma, P. I. In Sensors for Environment, Health and Security: Advanced Materials and Technologies NATO Science for Peace and Security Series C-Environmental Security (ed. Baraton, M. I.) 451-+ (Springer, 2009). 59. Sadasivuni, K. K., Ponnamma, D., Kasak, P., Krupa, I. & Al-Maadeed, M. Designing dual phase sensing materials from polyaniline filled styrene-isoprene-styrene composites. Materials Chemistry and Physics 147, 1029–1036, https://doi.org/10.1016/j.matchemphys.2014.06.055 (2014). 60. Bal, S. & Saha, S. Mechanical performances of hygrothermally conditioned CNT/epoxy composites using seawater. J. Polym. Eng. 37, 633–645, https://doi.org/10.1515/polyeng-2016-0121 (2017). 61. Wan, Y. J. et al. Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites. Compos. Sci. Technol. 122, 27–35, https://doi.org/10.1016/j.compscitech.2015.11.005 (2016). 62. Bakhshandeh, E., Jannesari, A., Ranjbar, Z., Sobhani, S. & Saeb, M. R. Anti-corrosion hybrid coatings based on epoxy-silica nanocomposites: Toward relationship between the morphology and EISdata. Prog. Org. Coat. 77, 1169–1183, https://doi.org/10.1016/j.porgcoat.2014.04.005 (2014). 63. Wan, J. T. et al. A sustainable, eugenol-derived epoxy resin with high biobased content, modulus, hardness and low flammability: Synthesis, curing kinetics and structure-property relationship. Chemical Engineering Journal 284, 1080–1093, https://doi.org/10.1016/j.cej.2015.09.031 (2016). 64. Benna, M., Kbir-Ariguib, N., Clinard, C. & Bergaya, F. Static filtration of purified sodium bentonite clay suspensions. Effect of clay content. Applied Clay Science 19, 103–120 (2001). 65. Zhang, F., Du, N., Zhang, R. & Hou, W. Mechanochemical synthesis of Fe3O4@(Mg-Al-OH LDH) magnetic composite. Powder technology 228, 250–253 (2012). 66. Wang, L., Huang, Y., Li, C., Chen, J. & Sun, X. Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance. Compos. Sci. Technol. 108, 1–8 (2015). 67. Zhang, H., Zhang, Z., Friedrich, K. & Eger, C. Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Materialia 54, 1833–1842 (2006). 68. Withers, G. et al. Improved mechanical properties of an epoxy glass–fiber composite reinforced with surface organomodified nanoclays. Composites Part B: Engineering 72, 175–182 (2015). 69. Tang, C., Stueber, M., Seifert, H. J. & Steinbrueck, M. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings. Corrosion Reviews, 35, 141–165 (2017). 70. Kadapparambil, S., Yadav, K., Ramachandran, M. & Victoria Selvam, N. In Corrosion Reviews 35, 111 (2017). 71. Kumar, R. et al. Experimental and theoretical approach to exploit the corrosion inhibition activity of 3-formyl chromone derivatives on mild steel in 1 m H2SO4. Corrosion Reviews 35, 95–110 (2017). 72. Dahiya, S., Lata, S., Kumar, P. & Kumar, R. A descriptive study for corrosion control of low-alloy steel by Aloe vera extract in acidic medium. Corrosion Reviews 34, 241–248 (2016). 73. Bai, Y. et al. Influence of 4 wt.% Cr addition on the corrosion-wear synergistic effect for Al2O3/Fe (Al) composites. Corrosion Reviews 34, 231–240 (2016). 74. Książek, M. Resistance to chemical attack of cement composites impregnated with a special polymer sulfur composite. Corrosion Reviews 34, 211–229 (2016). 75. Yang, D. et al. Electrochemical and XPS studies of alkyl imidazoline on the corrosion inhibition of carbon steel in citric acid solution. Corrosion Reviews 34, 295–304 (2016). 76. Radwan, A. B., Mohamed, A. M., Abdullah, A. M. & Al-Maadeed, M. A. Corrosion protection of electrospun PVDF–ZnO superhydrophobic coating. Surface and Coatings Technology 289, 136–143 (2016). 77. Rostami, M., Rasouli, S., Ramezanzadeh, B. & Askari, A. Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating. Corrosion Science 88, 387–399 (2014). 78. Popova, A. Temperature effect on mild steel corrosion in acid media in presence of azoles. Corrosion Science 49, 2144–2158 (2007). 79. Ramezanzadeh, B., Mohamadzadeh Moghadam, M. H., Shohani, N. & Mahdavian, M. Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating. Chemical Engineering Journal 320, 363–375, https://doi.org/10.1016/j.cej.2017.03.061 (2017). 80. Kinlen, P. J., Menon, V. & Ding, Y. A Mechanistic Investigation of Polyaniline Corrosion Protection Using the Scanning Reference Electrode Technique. Journal of The Electrochemical Society 146, 3690–3695, https://doi.org/10.1149/1.1392535 (1999). 81. Hosseini, M. G. & Sefidi, P. Y. Electrochemical impedance spectroscopy evaluation on the protective properties of epoxy/DBSAdoped polyaniline-TiO2 nanocomposite coated mild steel under cathodic polarization. Surface and Coatings Technology 331, 66–76, https://doi.org/10.1016/j.surfcoat.2017.10.043 (2017). 82. Cubides, Y. & Castaneda, H. Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions. Corrosion Science 109, 145–161 (2016). 83. Sudagar, J., Lian, J. & Sha, W. Electroless nickel, alloy, composite and nano coatings–A critical review. Journal of Alloys and Compounds 571, 183–204 (2013). 84. Liu, Y. et al. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying. Materials Research Bulletin 60, 359–366, https://doi.org/10.1016/j.materresbull.2014.09.006 (2014). 85. Adhikari, B. & Majumdar, S. Polymers in sensor applications. Progress in polymer science 29, 699–766 (2004). 86. Sadasivuni, K. K., Ponnamma, D., Kasak, P., Krupa, I. & Al-Maadeed, M. A. S. Designing dual phase sensing materials from polyaniline filled styrene–isoprene–styrene composites. Materials Chemistry and Physics 147, 1029–1036 (2014). 87. Bhanvase, B. et al. Ultrasound assisted synthesis of PANI/ZnMoO 4 nanocomposite for simultaneous improvement in anticorrosion, physico-chemical properties and its application in gas sensing. Ultrasonics sonochemistry 24, 87–97 (2015). 88. Debelak, B. & Lafdi, K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45, 1727–1734 (2007). | |
utb.fulltext.sponsorship | The NPRP Award [8-878-1-172] from the Qatar National Research Fund (a member of Qatar Foundation) made this manuscript possible. | |
utb.wos.affiliation | [Jlassi, Khouloud; Radwan, A. Bahgat; Sadasivuni, Kishor Kumar; Abdullah, Aboubakr M.; Krupa, Igor] Qatar Univ, Ctr Adv Mat, POB 2713, Doha, Qatar; [Mrlik, Miroslav] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic; [Chehimi, Mohamed M.] Univ Paris Est, CNRS, UMR7182, ICMPE,UPEC, F-94320 Thais, France; [Krupa, Igor] Qatar Univ, Ctr Adv Mat, QAPCO Polymer Chair, POB 2713, Doha, Qatar | |
utb.scopus.affiliation | Center for Advanced Materials, Qatar University, P. O. Box 2713, Doha, Qatar; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, 760 01, Czech Republic; University Paris Est, CNRS, UMR7182, ICMPE, UPEC, Thais, F-94320, France; QAPCO Polymer Chair, Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar | |
utb.fulltext.projects | NPRP 8-878-1-172 |