Publikace UTB
Repozitář publikační činnosti UTB

Predictive power of the ZEW sentiment indicator: Case of the German automotive industry

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Predictive power of the ZEW sentiment indicator: Case of the German automotive industry en
dc.contributor.author Homolka, Lubor
dc.contributor.author Pavelková, Drahomíra
dc.relation.ispartof Acta Polytechnica Hungarica
dc.identifier.issn 1785-8860 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 15
utb.relation.issue 4
dc.citation.spage 161
dc.citation.epage 178
dc.type article
dc.language.iso en
dc.publisher Budapest Tech
dc.identifier.doi 10.12700/APH.15.4.2018.4.9
dc.relation.uri https://www.uni-obuda.hu/journal/Issue83.htm
dc.relation.uri https://www.uni-obuda.hu/journal/Homolka_Pavelkova_83.pdf
dc.subject market sentiment en
dc.subject automotive industry en
dc.subject ZEW en
dc.subject DAX en
dc.subject VAR en
dc.subject Granger causality en
dc.description.abstract This paper presents an analysis of German automotive industry and its connection to the market sentiment indicator ZEW. The analysis spans a period of the last decade and is divided into Pre-Crisis, Crisis and Post-Crisis periods. Research questions related to the predictive power of ZEW indicator on macro level indicators (composite DAX and GDP), sector indicator (technology-oriented companies TecDAX) and a selected automotive manufacturer (BMW) were answered. We found that ZEW index had foreseen the economic crisis starting in the March 2008 three months ahead of its start, but failed to see an upcoming economic recovery. We fit two models to estimate whether ZEW index can be used as a standalone forecasting instrument or whether inclusion of lagged values of other variables improves forecasting ability. We conclude that predictions from the ZEW-only models are worse in the test sample than those of the more complex model. We provide further evidence in form cross-correlations and causality analysis in the Granger sense. The study concludes with Impulse Response Function analysis. This analysis found that reaction of TecDAX on change of ZEW is strongest amongst studied variables. © 2018, Budapest Tech Polytechnical Institution. All rights reserved. en
utb.faculty Faculty of Management and Economics
dc.identifier.uri http://hdl.handle.net/10563/1008198
utb.identifier.obdid 43879413
utb.identifier.scopus 2-s2.0-85052659266
utb.identifier.wok 000442389300009
utb.source j-scopus
dc.date.accessioned 2018-10-03T11:13:02Z
dc.date.available 2018-10-03T11:13:02Z
dc.description.sponsorship 16-25536S, GACR, Grantová Agentura České Republiky; GA CR, GACR, Grantová Agentura České Republiky
dc.description.sponsorship Czech Science Foundation (GA CR) [16-25536S]
utb.contributor.internalauthor Homolka, Lubor
utb.contributor.internalauthor Pavelková, Drahomíra
utb.fulltext.affiliation Lubor Homolka, Drahomíra Pavelková Tomas Bata University in Zlín, Faculty of Management and Economics, Mostní 5139, 760 01 Zlín, Czech Republic homolka@fame.utb.cz, pavelkova@fame.utb.cz
utb.fulltext.dates -
utb.fulltext.references [1] Peiró, A. (2016) Stock prices and macroeconomic factors: Some European evidence. International Review of Economics & Finance, 41, 287-294. doi:10.1016/j.iref.2015.08.004 [2] Finter, P., Niessen-Ruenzi, A. &Ruenzi, S. (2012) The Impact of Investor Sentiment on the German Stock Market. Zeitschriftfür Betriebswirtschaft,82(0), 133-163, doi:10.2139/ssrn.1650164 [3] Baker, M. & Wurgler, J. (2006) Investor Sentiment and the Cross-Section of Stock Returns. The Journal of Finance, 61(4), 1645-1680. doi:10.1111/j.1540-6261.2006.00885.x [4] Shen, J., Yu, J. & Zhao, S. (2017) Investor sentiment and economic forces. Journal of Monetary Economics, 86, 1-21. doi:10.1016/j.jmoneco.2017.01.001 [5] Lux, T. (2010). Sentiment dynamics and stock returns: the case of the German stock market. Empirical Economics, 41(3), 663-679, doi:10.1007/s00181-010-0397-0 [6] Verma, R. & Soydemir, G. (2006) The Impact of U.S. Individual and Institutional Investor Sentiment on Foreign Stock Markets. Journal of Behavioral Finance, 7(3), 128-144. doi:10.1207/s15427579jpfm0703_2 [7] Spiwoks, M. (2004) Die Verwendbarkeit der ZEW-AktienindexPrognosenfür active Portfoliomanagement-Strategien / The Usefulness of ZEW Stock Market Forecasts for Active Portfolio Management Strategies. Jahrbücher fü rNationalökonomie und Statistik, 224(5) doi:10.1515/jbnst2004-0503 [8] Zhong, X., &Enke, D. (2017) Forecasting daily stock market return using dimensionality reduction. Expert Systems with Applications, 67, 126-139, doi:10.1016/j.eswa.2016.09.027 [9] Yu, J. & Yuan, Y. (2011) Investor sentiment and the mean–variance relation. Journal of Financial Economics, 100(2), 367-381, doi:10.1016/j.jfineco.2010.10.011 [10] Stambaugh, R., Yu, J. & Yuan, Y. (2012) The Short of It: Investor Sentiment and Anomalies. Journal of Financial Economics (104) 288-302, doi:10.1016/j.jfineco.2011.12.001 [11] Checkley, M., Higón, D. A., &Alles, H. (2017) The hasty wisdom of the mob: How market sentiment predicts stock market behavior. Expert Systems with Applications, 77, 256-263, doi:10.1016/j.eswa.2017.01.029 [12] Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. (2014) Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), 7653-7670, doi:10.1016/j.eswa.2014.06.009 [13] Germany GDP, Current Prices: Eurostat, Gross Domestic Product for Germany© [CPMNACNSAB1GQDE] retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CPMNACNSAB1GQDE, Febr. 17, 2017 [14] Akpinar, M. & Vincze, Z. (2016) The dynamics of coopetition: A stakeholder view of the German automotive industry. Industrial Marketing Management, 57, pp. 53-63, doi:10.1016/j.indmarman.2016.05.006 [15] Hüfner, F. P., &Schröder, M. (2002) Prognosegehalt von ifoGeschäftserwartungen und ZEW-Konjunkturerwartungen: EinökonometrischerVergleich / Forecasting German industrial Production: An Econometric Comparison of ifo- and ZEW-Business Expectations. Jahrbücher für Nationalökonomie und Statistik,222(3) doi:10.1515/jbnst2002-0303 [16] Schnader, M. H. &Stekler, H. O. (1990) Evaluating Predictions of Change. The Journal of Business, 63(1), 99-107, doi:10.1086/296486 [17] Tsuchiya, Y. (2016) Do production managers predict turning points? A directional analysis. Economic Modelling, 58, 1-8, doi:10.1016/j.econmod.2016.05.019 [18] Pfaff, B. (2008a) Analysis of integrated and cointegrated time series with R. New York: Springer, doi:10.1007/978-0-387-75967-8 [19] Pfaff, B. (2008b) VAR, SVAR and SVEC Models: Implementation Within R Package vars. Journal of Statistical Software, 27(4) doi:10.18637/jss.v027.i04 [20] Dean, R. T., & Dunsmuir, W. T. (2015) Dangers and uses of crosscorrelation in analyzing time series in perception, performance, movement, and neuroscience: The importance of constructing transfer function autoregressive models. Behavior Research Methods, 48(2), 783-802, doi:10.3758/s13428-015-0611-2 [21] Toda, H. Y., & Yamamoto, T. (1995) Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics, 66(1), 225-250, doi:10.1016/0304-4076(94)01616-8 [22] Britton, E., Fisher, P., & Whitley, J. (1998) The Inflation Report projections: understanding the fan chart. Bank of England Quarterly Bulletin, 38:30-37
utb.fulltext.sponsorship The authors are thankful to the Czech Science Foundation (GA CR), project No. 16-25536S: “Methodology of Developing a Predictive Model of Sector and Company Performance in the Macroeconomic Context”, for financial support of this research.
utb.wos.affiliation [Homolka, Lubor; Pavelkova, Drahomira] Tomas Bata Univ Zlin, Fac Econ & Management, Mostni 5139, Zlin 76001, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlín, Faculty of Management and Economics, Mostní 5139, Zlín, 760 01, Czech Republic
utb.fulltext.projects 16-25536S
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam