Publikace UTB
Repozitář publikační činnosti UTB

Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions en
dc.contributor.author Plachý, Tomáš
dc.contributor.author Kutálková, Erika
dc.contributor.author Sedlačík, Michal
dc.contributor.author Vesel, Alenka
dc.contributor.author Masař, Milan
dc.contributor.author Kuřitka, Ivo
dc.relation.ispartof Journal of Industrial and Engineering Chemistry
dc.identifier.issn 1226-086X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 66
dc.citation.spage 362
dc.citation.epage 369
dc.type article
dc.language.iso en
dc.publisher Korean Society of Industrial Engineering Chemistry
dc.identifier.doi 10.1016/j.jiec.2018.06.002
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1226086X18302922
dc.subject Carbonyl iron en
dc.subject Thermal oxidation en
dc.subject Magnetorheology en
dc.subject Magnetic particles en
dc.subject Chemical oxidation en
dc.description.abstract The study investigates an influence of carbonyl iron (CI) particles’ corrosion on magnetorheological performance of their silicone-oil suspensions. Carbonyl iron particles were oxidized thermally at 500 °C in the air or chemically in 0.05 HCl solution and the as-treated particles were subsequently used as a dispersed phase in magnetorheological suspensions. Corrosive layer on surface of oxidized particles was investigated using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Obtained rheological data was treated with Robertson–Stiff (R–S) model to determine yield stress values and in order to find the yield stress values of prepared magnetorheological (MR) suspensions at saturation level a mathematical model was used. The suspensions based on oxidized particles showed lower values of the yield stress, which was significantly manifested at higher magnetic field intensities due to lower saturation magnetization of the particles. © 2018 The Korean Society of Industrial and Engineering Chemistry en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1008207
utb.identifier.obdid 43879526
utb.identifier.scopus 2-s2.0-85048570633
utb.identifier.wok 000446144400037
utb.source j-scopus
dc.date.accessioned 2018-10-03T11:13:02Z
dc.date.available 2018-10-03T11:13:02Z
dc.description.sponsorship LO1504, NPU, Northwestern Polytechnical University; 17-24730S, GACR, Grantová Agentura České Republiky; MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; CZ.1.05/2.1.00/19.0409, FEDER, European Regional Development Fund; FEDER, European Regional Development Fund; Research and Development
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic [LO1504]; Operational Program Research and Development for Innovations - European Regional Development Fund (ERDF); national budget of the Czech Republic, within the framework of the Centre of Polymer Systems project [CZ.1.05/2.1.00/19.0409]; Czech Science Foundation [17-24730S]
utb.ou Centre of Polymeric Systems
utb.contributor.internalauthor Plachý, Tomáš
utb.contributor.internalauthor Kutálková, Erika
utb.contributor.internalauthor Sedlačík, Michal
utb.contributor.internalauthor Masař, Milan
utb.contributor.internalauthor Kuřitka, Ivo
utb.fulltext.affiliation Tomas Plachy a, *, Erika Kutalkova a , Michal Sedlacik a , Alenka Vesel b , Milan Masar a , Ivo Kuritka a a Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic b Department of Surface Engineering and Optoelectronics, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
utb.fulltext.dates Received 20 March 2018 Received in revised form 16 May 2018 Accepted 1 June 2018 Available online 30 August 2018
utb.fulltext.references [1] M. Machovsky, M. Mrlik, T. Plachy, I. Kuritka, V. Pavlinek, Z. Kozakova, T. Kitano, RSC Adv. 5 (2015) 19213. [2] M. Mrlik, M. Ilcikova, M. Cvek, V. Pavlinek, A. Zahoranova, Z. Kronekova, P. Kasak, RSC Adv. 6 (2016) 32823. [3] T. Plachy, M. Cvek, Z. Kozakova, M. Sedlacik, R. Moucka, Smart Mater. Struct. 26 (2017). [4] R.C. Bell, J.O. Karli, A.N. Vavreck, D.T. Zimmerman, G.T. Ngatu, N.M. Wereley, Smart Mater. Struct. 17 (2008) 6. [5] M. Cvek, M. Mrlik, M. Ilcikova, T. Plachy, M. Sedlacik, J. Mosnacek, V. Pavlinek, J. Mater. Chem. C 3 (2015) 4646. [6] J. de Vicente, D.J. Klingenberg, R. Hidalgo-Alvarez, Soft Matter 7 (2011) 3701. [7] L. Rodriguez-Arco, M.T. Lopez-Lopez, P. Kuzhir, F. Gonzalez-Caballero, Phys. Rev. E 90 (2014) 11. [8] M. Bitaraf, O.E. Ozbulut, S. Hurlebaus, L. Barroso, Eng. Struct. 32 (2010) 3040. [9] F. Bucchi, P. Forte, A. Franceschini, F. Frendo, Smart Mater. Struct. 22 (2013) 10. [10] S. Nagai, H. Tomori, Y. Midorikawa, T. Nakamura, The Position and Vibration Control of the Artificial Muscle Manipulator by Variable Viscosity Coefficient Using MR Brake, IEEE, New York, 2011. [11] X.C. Zhu, X.J. Jing, L. Cheng, J. Intell. Mater. Syst. Struct. 23 (2012) 839. [12] N. Caterino, M. Spizzuoco, A. Occhiuzzi, Smart Mater. Struct. 27 (2018) 9. [13] M. Cheng, Z.B. Chen, J.W. Xing, IEEE Trans. Magn. 54 (2018) 10. [14] P. Yadmellat, R.V. Patel, J. Intell. Mater. Syst. Struct. 29 (2018) 905. [15] G.S. Wang, Y.Y. Ma, Y. Tong, X.F. Dong, J. Ind. Eng. Chem. 48 (2017) 142. [16] M. Mrlik, M. Ilcikova, V. Pavlinek, J. Mosnacek, P. Peer, P. Filip, J. Colloid Interface Sci. 396 (2013) 146. [17] M.W. Tan, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, Corrosion Sci. 37 (1995) 331. [18] A. Wiehe, J. Maas, J. Intell. Mater. Syst. Struct. 24 (2013) 1433. [19] J.C. Ulicny, M.P. Balogh, N.M. Potter, R.A. Waldo, Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 443 (2007) 16. [20] J. Roupec, I. Mazurek, Stability of Magnetorheological Effect during Long Term Operation, Springer-Verlag Berlin, Berlin, 2011. [21] J.D. Carlson, J. Intell. Mater. Syst. Struct. 13 (2002) 431. [22] J. Roupec, I. Mazurek, Z. Strecker, M. Klapka, in: H.I. Unal (Ed.), The Behavior of the MR Fluid During Durability Test, IOP Publishing Ltd., Bristol, 2013. [23] I. Abe, T. Kikuchi, J. Noma, Smart Mater. Struct. 26 (2017) 11. [24] J.C. Ulicny, C.A. Hayden, P.A. Hanley, D.F. Eckel, Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 464 (2007) 269–273. [25] M. Cvek, M. Mrlik, M. Ilcikova, J. Mosnacek, V. Babayan, Z. Kucekova, P. Humpolicek, V. Pavlinek, RSC Adv. 5 (2015) 72816. [26] M. Sedlacik, V. Pavlinek, RSC Adv. 4 (2014) 58377. [27] M. Mrlik, V. Pavlinek, Smart Mater. Struct. 25 (2016) 10. [28] J.W. Lee, K.P. Hong, S.H. Kwon, H.J. Choi, M.W. Cho, Ind. Eng. Chem. Res. 56 (2017) 2416. [29] Y.D. Liu, F.F. Fang, H.J. Choi, Colloid Polym. Sci. 289 (2011) 1295. [30] Y.D. Liu, H.J. Choi, S.B. Choi, Colloid Surf. A: Physicochem. Eng. Asp. 403 (2012) 133. [31] A. Esmaeilzare, S.M. Rezaei, B. Ramezanzadeh, Appl. Surf. Sci. 436 (2018) 1200. [32] M. Sedlacik, V. Pavlinek, R. Vyroubal, P. Peer, P. Filip, Smart Mater. Struct. 22 (2013) 8. [33] T. Yamashita, P. Hayes, Appl. Surf. Sci. 254 (2008) 2441. [34] C.S. Doyle, C.K. Seal, B.J. James, Appl. Surf. Sci. 257 (2011) 10005. [35] T. Fujii, F.M.F. de Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma, K. Okada, Phys. Rev. B 59 (1999) 3195. [36] S. Gyergyek, D. Makovec, M. Jagodic, 9 M. Drofenik, K. Schenk, O. Jordan, J. Kovac, G. Dražic, 9 H. Hofmann, J. Alloys Compd. 694 (2017) 261. [37] X.Y. Zhong, X.Q. Wu, E.H. Han, Corrosion Sci. 90 (2015) 511. [38] NIOSA Technology, NIST Electron Inelastic-Mean-Free-Path Database, U.S. Department of Commerce, Maryland, USA, 2000. [39] B.E. Monsen, S.E. Olsen, L. Kolbeinsen, Scand. J. Metall. 23 (1994) 74. [40] A. Millan, F. Palacio, A. Falqui, E. Snoeck, V. Serin, A. Bhattacharjee, V. Ksenofontov, P. Gutlich, I. Gilbert, Acta Mater. 55 (2007) 2201. [41] H. Gavilan, O. Posth, L.K. Bogart, U. Steinhoff, L. Gutierrez, M.P. Morales, Acta Mater. 125 (2017) 416. [42] A.S. Teja, P.Y. Koh, Prog. Cryst. Growth Charact. Mater. 55 (2009) 22. [43] H.S. Chae, S.H. Piao, H.J. Choi, J. Ind. Eng. Chem. 29 (2015) 129. [44] M. Cvek, M. Mrlik, V. Pavlinek, J. Rheol. 60 (2016) 687. [45] F.F. Fang, Y.D. Liu, H.J. Choi, Y. Seo, ACS Appl. Mater. Interfaces 3 (2011) 3487. [46] J.M. Ginder, L.C. Davis, L.D. Elie, Int. J. Mod. Phys. B 10 (1996) 3293. [47] J.M. Ginder, L.C. Davis, Appl. Phys. Lett. 65 (1994) 3410. [48] M.I. Varela-Jimenez, J.L.V. Luna, J.A. Cortes-Ramirez, G. Song, Smart Mater. Struct. 24 (2015) 7.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504). This research was also carried out with support of the Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of the Czech Republic, within the framework of the Centre of Polymer Systems project (CZ.1.05/2.1.00/19.0409). The authors wish to thank the Czech Science Foundation (17-24730S) for financial support.
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic; Department of Surface Engineering and Optoelectronics, Jozef Stefan Institute, Jamova cesta 39, Ljubljana, 1000, Slovenia
utb.fulltext.projects LO1504
utb.fulltext.projects CZ.1.05/2.1.00/19.0409
utb.fulltext.projects 17-24730S
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam