Publikace UTB
Repozitář publikační činnosti UTB

Differential evolution and analytic programming in the case of trigonometric identities discovery

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Differential evolution and analytic programming in the case of trigonometric identities discovery en
dc.contributor.author Komínková Oplatková, Zuzana
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Viktorin, Adam
dc.relation.ispartof 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP)
dc.identifier.issn 2157-8672 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-1-5386-6979-2
dc.date.issued 2018
utb.relation.volume 2018-June
dc.event.title 25th International Conference on Systems, Signals and Image Processing, IWSSIP 2018
dc.event.location Maribor
utb.event.state-en Slovenia
utb.event.state-cs Slovinsko
dc.event.sdate 2018-06-20
dc.event.edate 2018-06-22
dc.type conferenceObject
dc.language.iso en
dc.publisher IEEE Computer Society
dc.identifier.doi 10.1109/IWSSIP.2018.8439705
dc.relation.uri https://ieeexplore.ieee.org/document/8439705
dc.subject Analytic Programming en
dc.subject Differential Evolution en
dc.subject Trigonometric identities en
dc.description.abstract The paper deals with the discovery of trigonometric identities of four functions via Analytic Programming and four strategies of Differential evolution (canonical DE/Rand/l/Bin, chaos-based DE/Rand/l/Bin-Lozi, DE/Rand/l/Bin-Burgers and SHADE). The results showed that all four strategies were comparable for this specific task. © 2018 IEEE. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1008212
utb.identifier.obdid 43879081
utb.identifier.scopus 2-s2.0-85053146930
utb.identifier.wok 000451277200061
utb.source d-scopus
dc.date.accessioned 2018-10-03T11:13:03Z
dc.date.available 2018-10-03T11:13:03Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the Project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2018/003]; COST (European Cooperation in Science Technology) [Action CA15140]; Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO); High-Performance Modelling and Simulation for Big Data Applications (cHiPSet) [Action IC1406]; A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin
utb.ou CEBIA-Tech
utb.contributor.internalauthor Komínková Oplatková, Zuzana
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Viktorin, Adam
utb.fulltext.affiliation Zuzana Kominkova Oplatkova 1, Roman Senkerik 2, Adam Viktorin 3 1,2,3 Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam. T.G.Masaryka 5555, Zlin, Czech Republic oplatkova@utb.cz
utb.fulltext.dates -
utb.fulltext.references [1] S. M. Musa, “Chapter 7 – Trigonometry”, In Fundamentals of Technical Mathematics, Academic Press, 2016, p. 187-219, ISBN 9780128019870, https://doi.org/10.1016/B978-0-12-801987-0.00007-1. [2] J. R. Koza, “Hierarchical genetic algorithms operating on populations of computer programs”, In Proceedings of the 11th International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann. Volume I. pp. 768-774, 1989. [3] C. Ryan, M. O'Neill, J.J. Collins, “Grammatical evolution: Solving trigonometric identities” Proceedings of Mendel 1998: 4th International Mendel Conference on Genetic Algorithms, Optimisation Problems, Fuzzy Logic, Neural Networks, Rough Sets, pp. 111-119, (1998). [4] Hoai N.X. “Solving Trigonometric Identities with Tree Adjunct Grammar Guided Genetic Programming”, In: Abraham A., Köppen M. (eds) Hybrid Information Systems. Advances in Soft Computing, vol 14. Physica, Heidelberg, p. 339-351 2002, ISBN 978-3-7908-1480-4 doi. https://doi.org/10.1007/978-3-7908-1782-9_25 [5] I. Zelinka, D. Davendra, R. Senkerik, R. Jasek and Z. Oplatkova “Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures”, in Kita E.: Evolutionary Algorithms, InTech 2011, ISBN: 978-953-307-171-8 [6] Z. Oplatkova, “Metaevolution: Synthesis of Optimization Algorithms by means of Symbolic Regression and Evolutionary Algorithms”, Lambert Academic Publishing Saarbrücken, 2009, ISBN: 978-3-8383-1808-0 [7] F. Olivetti de França, “A greedy search tree heuristic for symbolic regression”, Information Sciences, Volumes 442–443, 2018, pp 18-32, ISSN 0020-0255, https://doi.org/10.1016/j.ins.2018.02.040. [8] Storn R.and Price K., “Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” Journal of Global Optimization, vol. 11, pp. 341–359, 1997. [9] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, ser. Natural Computing Series. Berlin, Germany: Springer-Verlag, 2005. [10] F. Neri and V. Tirronen, “Recent Advances in Differential Evolution: A Survey and Experimental Analysis,” Artificial Intelligence Review, vol. 33, no. 1–2, pp. 61–106, 2010. [11] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the State-of-the-art,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4–31, 2011. [12] S.Das, S.S.Mullick, and P.Suganthan, “Recent advances in differential evolution – An updated survey,” Swarm and Evolutionary Computation, vol. 27, pp. 1–30, 2016. [13] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006. [14] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 98–417, 2009. [15] J.Brest,P.Korosec,J.Silc,A.Zamuda,B.Boskovic and M.S.Maucec, “Differential evolution and differential ant-stigmergy on dynamic optimisation problems,” International Journal of Systems Science, vol. 44, no. 4, pp. 663–679, 2013. [16] R. Tanabe and A. S. Fukunaga, “Improving the search performance of SHADE using linear population size reduction,” in 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014, pp. 1658–1665. [17] R. Senkerik, M. Pluhacek, I. Zelinka, Z. Oplatkova, R. Vala, and R. Jasek, "Performance of Chaos Driven Differential Evolution on ShiftedBenchmark Functions Set," in International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. vol. 239, Á. Herrero, B. Baruque, F. Klett, A. Abraham, V. Snášel, A. C. P. L. F. Carvalho, et al., Eds., ed: Springer International Publishing, 2014, pp. 41-50. [18] R. Senkerik, D. Davendra, I. Zelinka, M. Pluhacek, and Z. Kominkova Oplatkova, "On the Differential Evolution Driven by Selected Discrete Chaotic Systems: Extended Study," in 19th International Conference on Soft Computing, MENDEL 2013, 2013, pp. 137-144. [19] Z. Kominkova Oplatkova, A. Viktorin, R. Senkerik. “Comparison of Three Novelty Approaches to Constants (Ks) Handling in Analytic Programming Powered by SHADE”, Mendel, Springer Series 2018, unpublished [20] T. Urbanek, Z. Prokopova, R. Silhavy, A. Kuncar, “New Approach of Constant Resolving of Analytical Programming”, In 30th European Conference on Modelling and Simulation, 2016, p. 231-236. ISBN 978-0-9932440-2-5. [21] A. Viktorin, M. Pluhacek, Z. Kominkova Oplatkova, R. Senkerik, “Analytical Programming with Extended Individuals”, In 30th European Conference on Modelling and Simulation, 2016, p. 237-244. ISBN 978-0-9932440-2-5.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT7778/2014), further by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2018/003. This work is also based upon support by COST (European Cooperation in Science & Technology) under Action CA15140, Improving Applicability of NatureInspired Optimisation by Joining Theory and Practice (ImAppNIO), and Action IC1406, High-Performance Modelling and Simulation for Big Data Applications (cHiPSet). The work was further supported by resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz).
utb.wos.affiliation [Oplatkova, Zuzana Kominkova; Senkerik, Roman; Viktorin, Adam] Tomas Bata Univ Zlin, Fac Appl Informat, Nam TG Masaryka 5555, Zlin, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam. T.G.Masaryka 5555, Zlin, Czech Republic
utb.fulltext.projects LO1303 (MSMT7778/2014)
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
utb.fulltext.projects IGA/CebiaTech/2018/003
utb.fulltext.projects CA15140
utb.fulltext.projects ImAppNIO
utb.fulltext.projects IC1406
utb.fulltext.projects cHiPSet
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam