Publikace UTB
Repozitář publikační činnosti UTB

Water-based indium tin oxide nanoparticle ink for printed toluene vapours sensor operating at room temperature

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Water-based indium tin oxide nanoparticle ink for printed toluene vapours sensor operating at room temperature en
dc.contributor.author Mašlík, Jan
dc.contributor.author Kuřitka, Ivo
dc.contributor.author Urbánek, Pavel
dc.contributor.author Krčmář, Petr
dc.contributor.author Šuly, Pavol
dc.contributor.author Masař, Milan
dc.contributor.author Machovský, Michal
dc.relation.ispartof Sensors (Switzerland)
dc.identifier.issn 1424-8220 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 18
utb.relation.issue 10
dc.type article
dc.language.iso en
dc.publisher Molecular Diversity Preservation International (MDPI)
dc.identifier.doi 10.3390/s18103246
dc.relation.uri https://www.mdpi.com/1424-8220/18/10/3246
dc.relation.uri https://www.mdpi.com/1424-8220/18/10/3246/pdf
dc.subject Indium tin oxide en
dc.subject Nanoparticle en
dc.subject Inkjet ink en
dc.subject Material printing en
dc.subject Dimensionless number en
dc.subject Gas sensor en
dc.subject Room temperature en
dc.description.abstract This study is focused on the development of water-based ITO nanoparticle dispersions and ink-jet fabrication methodology of an indium tin oxide (ITO) sensor for room temperature operations. Dimensionless correlations of material-tool-process variables were used to map the printing process and several interpretational frameworks were re-examined. A reduction of the problem to the Newtonian fluid approach was applied for the sake of simplicity. The ink properties as well as the properties of the deposited layers were tested for various nanoparticles loading. High-quality films were prepared and annealed at different temperatures. The best performing material composition, process parameters and post-print treatment conditions were used for preparing the testing sensor devices. Printed specimens were exposed to toluene vapours at room temperature. Good sensitivity, fast responses and recoveries were observed in ambient air although the n-type response mechanism to toluene is influenced by moisture in air and baseline drift was observed. Sensing response inversion was observed in an oxygen and moisture-free N2 atmosphere which is explained by the charge-transfer mechanism between the adsorbent and adsorbate molecules. The sensitivity of the device was slightly better and the response was stable showing no drifts in the protective atmosphere. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1008253
utb.identifier.obdid 43879523
utb.identifier.scopus 2-s2.0-85054475987
utb.identifier.wok 000448661500074
utb.identifier.pubmed 30261700
utb.source j-scopus
dc.date.accessioned 2018-11-01T09:32:10Z
dc.date.available 2018-11-01T09:32:10Z
dc.description.sponsorship CZ.1.05/2.1.00/19.0409; IGA/CPS/2015/006; IGA/CPS/2017/008; IGA/CPS/2016/007; LO1504, NPU, Northwestern Polytechnical University; FEDER, European Regional Development Fund; MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; FEDER, European Regional Development Fund; Research and Development
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic-Program NPU I [LO1504]; Operational Program Research and Development for Innovations; European Regional Development Fund (ERDF); national budget of Czech Republic [CZ.1.05/2.1.00/19.0409]; Internal Grant Agency of Tomas Bata University in Zlin [IGA/CPS/2015/006, IGA/CPS/2016/007, IGA/CPS/2017/008]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Mašlík, Jan
utb.contributor.internalauthor Kuřitka, Ivo
utb.contributor.internalauthor Urbánek, Pavel
utb.contributor.internalauthor Krčmář, Petr
utb.contributor.internalauthor Šuly, Pavol
utb.contributor.internalauthor Masař, Milan
utb.contributor.internalauthor Machovský, Michal
utb.fulltext.affiliation Jan Maslik, Ivo Kuritka * https://orcid.org/0000-0002-1016-5170 , Pavel Urbanek https://orcid.org/0000-0002-9090-4681 , Petr Krcmar, Pavol Suly, Milan Masar and Michal Machovsky Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; maslik@utb.cz (J.M.); urbanek@utb.cz (P.U.); pkrcmar@utb.cz (P.K.); suly@utb.cz (P.S.); masar@utb.cz (M.M.); machovsky@utb.cz (M.M.) * Correspondence: ivo@kuritka.net or kuritka@utb.cz
utb.fulltext.dates Received: 21 August 2018; Accepted: 24 September 2018; Published: 27 September 2018
utb.fulltext.references 1. McAleer, J.F.; Moseley, P.T.; Norris, J.O.W.; Williams, D.E. Tin Dioxide Gas Sensors. Part 1. Aspects of the Surface Chemistry Revealed by Electrical Conductance Variations. J. Chem. Soc. Faraday Trans. 1 1987, 83, 1323–1346. [http://dx.doi.org/10.1039/f19878301323] 2. Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale Metal Oxide-Based Heterojunctions for Gas Sensing: A Review. Sens. Actuators B Chem. 2014, 204, 250–272. [http://dx.doi.org/10.1016/j.snb.2014.07.074] 3. Carpenter, M.A.; Mathur, S.; Kolmakov, A. Metal Oxide Nanomaterials for Chemical Sensors; Springer: New York, NY, UK, 2013. 4. Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2016, 28, 795–831. [http://dx.doi.org/10.1002/adma.201503825] [http://www.ncbi.nlm.nih.gov/pubmed/26662346] 5. Wang, L.; Wang, Y.; Yu, K.; Wang, S.; Zhang, Y.; Wei, C. A Novel Low Temperature Gas Sensor Based on Pt-Decorated Hierarchical 3D SnO 2 Nanocomposites. Sens. Actuators B Chem. 2016, 232, 91–101. [http://dx.doi.org/10.1016/j.snb.2016.02.135] 6. Mbarek, H.; Saadoun, M.; Bessaïs, B. Screen-Printed Tin-Doped Indium Oxide (ITO) Films for NH 3 Gas Sensing. Mater. Sci. Eng. C 2006, 26, 500–504. [http://dx.doi.org/10.1016/j.msec.2005.10.037] 7. Bessais, B.; Mliki, N.; Bennaceur, R. Technological, Structural and Morphological Aspects of Screen-Printed ITO used in ITO/Si Type Structure. Semicond. Sci. Technol. 1993, 8, 116–121. [http://dx.doi.org/10.1088/0268-1242/8/1/019] 8. Gurlo, A.; Ivanovskaya, M.; Bârsan, N.; Schweizer-Berberich, M.; Weimar, U.; Göpel, W.; Diéguez, A. Grain Size Control in Nanocrystalline In 2 O 3 Semiconductor Gas Sensors. Sens. Actuators B Chem. 1997, 44, 327–333. [http://dx.doi.org/10.1016/S0925-4005(97)00199-8] 9. Fortin, J.B.; Zribi, A. Functional Thin Films and Nanostructures for Sensors: Synthesis, Physics and Applications; Springer: New York, NY, USA, 2009. 10. Sahner, K.; Tuller, H.L. Novel Deposition Techniques for Metal Oxide: Prospects for Gas Sensing. J. Electroceram. 2010, 24, 177–199. [http://dx.doi.org/10.1007/s10832-008-9554-7] 11. Sjöberg, P.; Määttänen, A.; Vanamo, U.; Novell, M.; Ihalainen, P.; Andrade, F.J.; Bobacka, J.; Peltonen, J. Paper-Based Potentiometric Ion Sensors Constructed on Ink-Jet Printed Gold Electrodes. Sens. Actuators B Chem. 2016, 224, 325–332. [http://dx.doi.org/10.1016/j.snb.2015.10.051] 12. Kukkola, J.; Mohl, M.; Leino, A.; Toth, G.; Wu, M.; Shchukarev, A.; Popov, A.; Mikkola, J.; Lauri, J.; Riihimaki, M.; et al. Inkjet-Printed Gas Sensors: Metal Decorated WO 3 Nanoparticles and their Gas Sensing Properties. J. Mater. Chem. 2012, 22, 17878–17886. [http://dx.doi.org/10.1039/c2jm32499g] 13. Chang, C.; Hung, S.; Lin, C.; Chen, C.; Kuo, E. Selective Growth of ZnO Nanorods for Gas Sensors using Ink-Jet Printing and Hydrothermal Processes. Thin Solid Films 2010, 519, 1693–1698. [http://dx.doi.org/10.1016/j.tsf.2010.08.153] 14. Lai, H.; Chen, T.; Chen, C. Optical and Electrical Properties of Ink-Jet Printed Indium–tin-Oxide Nanoparticle Films. Mater. Lett. 2011, 65, 3336–3339. [http://dx.doi.org/10.1016/j.matlet.2011.07.046] 15. Jeong, J.; Lee, J.; Kim, H.; Kim, H.; Na, S. Ink-Jet Printed Transparent Electrode using Nano-Size Indium Tin Oxide Particles for Organic Photovoltaics. Sol. Energy Mater. Sol. Cells 2010, 94, 1840–1844. [http://dx.doi.org/10.1016/j.solmat.2010.05.052] 16. Magdassi, S. The Chemistry of Inkjet Inks, 1st ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2010. 17. Leach, R.H. The Printing Ink Manual; Kluwer: Dordrecht, The Netherlands, 1999. 18. Facchetti, A.; Marks, T. Transparent Electronics: From Synthesis to Applications; Wiley: Hoboken, NJ, USA, 2010. 19. Vaishnav, V.S.; Patel, S.G.; Panchal, J.N. Development of Indium Tin Oxide Thin Film Toluene Sensor. Sens. Actuators B Chem. 2015, 210, 165–172. [http://dx.doi.org/10.1016/j.snb.2014.11.075] 20. Afshar, M.; Preiß, E.M.; Sauerwald, T.; Rodner, M.; Feili, D.; Straub, M.; König, K.; Schütze, A.; Seidel, H. Indium-Tin-Oxide Single-Nanowire Gas Sensor Fabricated via Laser Writing and Subsequent Etching. Sens. Actuators B Chem. 2015, 215, 525–535. [http://dx.doi.org/10.1016/j.snb.2015.03.067] 21. Lin, C.; Chen, H.; Chen, T.; Huang, C.; Hsu, C.; Liu, R.; Liu, W. On an Indium–tin-Oxide Thin Film Based Ammonia Gas Sensor. Sens. Actuators B Chem. 2011, 160, 1481–1484. [http://dx.doi.org/10.1016/j.snb.2011.07.041] 22. Hwang, M.; Jeong, B.; Moon, J.; Chun, S.; Kim, J. Inkjet-Printing of Indium Tin Oxide (ITO) Films for Transparent Conducting Electrodes. Mater. Sci. Eng. B 2011, 176, 1128–1131. [http://dx.doi.org/10.1016/j.mseb.2011.05.053] 23. Koo, J.; Lee, S.; Cho, S.; Chang, J. Effect of Additives on the Properties of Printed ITO Sensors. J. Korean Phys. Soc. 2017, 71, 335–339. [http://dx.doi.org/10.3938/jkps.71.335] 24. Koo, J.; Park, S.; Lee, W.; Cho, Y.; Lee, H.; Lee, S.; Chang, J. Room Temperature Operation of ITO Nano-Crystal Gas Sensor. Phys. Status Solidi C 2013, 10, 873–876. [http://dx.doi.org/10.1002/pssc.201200617] 25. Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide Semiconductor Gas Sensors. Catal. Surv. Asia 2003, 7, 63–75. [http://dx.doi.org/10.1023/A:1023436725457] 26. Anonymous. FUJIFILM Dimatix Materials Printer DMP-2800 Series User Manual; FUJIFILM Dimatix, Inc.: Santa Clara, CA, USA, 2010. 27. Soleimani-Gorgani, A.; Bakhshandeh, E.; Najafi, F. Effect of Dispersant Agents on Morphology and Optical–electrical Properties of Nano Indium Tin Oxide Ink-Jet Ink. J. Eur. Ceram. Soc. 2014, 34, 2959–2966. [http://dx.doi.org/10.1016/j.jeurceramsoc.2014.04.030] 28. Cho, Y.; Kim, H.; Hong, J.; Yi, G.; Jang, S.H.; Yang, S. Dispersion Stabilization of Conductive Transparent Oxide Nanoparticles. Colloids Surf. Physicochem. Eng. Asp. 2009, 336, 88–98. [http://dx.doi.org/10.1016/j.colsurfa.2008.11.014] 29. Pan, Z.; Wang, Y.; Huang, H.; Ling, Z.; Dai, Y.; Ke, S. Recent Development on Preparation of Ceramic Inks in Ink-Jet Printing. Ceram. Int. 2015, 41, 12515–12528. [http://dx.doi.org/10.1016/j.ceramint.2015.06.124] 30. Kim, E.; Baek, J. Numerical Study on the Effects of Non-Dimensional Parameters on Drop-on-Demand Droplet Formation Dynamics and Printability Range in the Up-Scaled Model. Phys. Fluids 2012, 24, 082103. [http://dx.doi.org/10.1063/1.4742913] 31. McKinley, G.H.; Renardy, M. Wolfgang Von Ohnesorge. Phys. Fluids 2011, 23, 127101. [http://dx.doi.org/10.1063/1.3663616] 32. Derby, B. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414. [http://dx.doi.org/10.1146/annurev-matsci-070909-104502] 33. Derby, B. Additive Manufacture of Ceramics Components by Inkjet Printing. Engineering 2015, 1, 113–123. [http://dx.doi.org/10.15302/J-ENG-2015014] 34. Duineveld, P.C.; de Kok, M.M.; Buechel, M.; Sempel, A.; Mutsaers, K.A.; van de Weijer, P.; Camps, I.G.; van de Biggelaar, T.; Rubingh, J.E.J.; Haskal, E.I. Ink-Jet Printing of Polymer Light-Emitting Devices. Proc. SPIE 2002, 4464. [http://dx.doi.org/10.1117/12.457460] 35. Korotcenkov, G. The Role of Morphology and Crystallographic Structure of Metal Oxides in Response of Conductometric-Type Gas Sensors. Mater. Sci. Eng. R Rep. 2008, 61, 1–39. [http://dx.doi.org/10.1016/j.mser.2008.02.001] 36. Bernacka-Wojcik, I.; Wojcik, P.J.; Aguas, H.; Fortunato, E.; Martins, R. Inkjet Printed Highly Porous TiO 2 Films for Improved Electrical Properties of Photoanode. J. Colloid Interface Sci. 2016, 465, 208–214. [http://dx.doi.org/10.1016/j.jcis.2015.11.070] [http://www.ncbi.nlm.nih.gov/pubmed/26674237] 37. Barsan, N.; Koziej, D.; Weimar, U. Metal Oxide-Based Gas Sensor Research: How to? Sens. Actuators B Chem. 2007, 121, 18–35. [http://dx.doi.org/10.1016/j.snb.2006.09.047] 38. Korotcenkov, G.; Brinzari, V.; Ivanov, M.; Cerneavschi, A.; Rodriguez, J.; Cirera, A.; Cornet, A.; Morante, J. Structural Stability of Indium Oxide Films Deposited by Spray Pyrolysis during Thermal Annealing. Thin Solid Films 2005, 479, 38–51. [http://dx.doi.org/10.1016/j.tsf.2004.11.107] 39. Barsan, N.; Schweizer-Berberich, M.; Göpel, W. Fundamental and Practical Aspects in the Design of Nanoscaled SnO 2 Gas Sensors: A Status Report. Fresenius J. Anal. Chem. 1999, 365, 287–304. [http://dx.doi.org/10.1007/s002160051490] 40. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [http://dx.doi.org/10.3390/s100302088] [http://www.ncbi.nlm.nih.gov/pubmed/22294916] 41. Smyth, D. The Role of Impurities in Insulating Transition-Metal Oxides. Prog. Solid State Chem. 1984, 15, 145–171. [http://dx.doi.org/10.1016/0079-6786(84)90001-3] 42. Williams, D.; Moseley, P. Dopant Effects on the Response of Gas-Sensitive Resistors Utilizing Semiconducting Oxides. J. Mater. Chem. 1991, 1, 809–814. [http://dx.doi.org/10.1039/jm9910100809] 43. Gurlo, A.; Barsan, N.; Oprea, A.; Sahm, M.; Sahm, T.; Weimar, U. An N- to P-Type Conductivity Transition Induced by Oxygen Adsorption on Alpha-Fe 2 O 3 . Appl. Phys. Lett. 2004, 85, 2280–2282. [http://dx.doi.org/10.1063/1.1794853] 44. Lin, J.; Li, Z. Electronic Conduction Properties of Indium Tin Oxide: Single-Particle and Many-Body Transport. J. Phys. Condens. Matter 2014, 26, 343201. [http://dx.doi.org/10.1088/0953-8984/26/34/343201] [http://www.ncbi.nlm.nih.gov/pubmed/25105780]
utb.fulltext.sponsorship Funding: This work was funded by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504). This article was written with support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of Czech Republic, within the framework of project CPS—strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409). The authors J.M., P.S., M.M. (Milan Masar) and P.K. specifically acknowledge funding by the Internal Grant Agency of Tomas Bata University in Zlín, grant No. IGA/CPS/2015/006, grant No. IGA/CPS/2016/007 and grant No. IGA/CPS/2017/008. Acknowledgments: Tomas Bata University in Zlin is acknowledged for all support provided in kind.
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, trida Tomase Bati 5678, Zlin, 760 01, Czech Republic
utb.fulltext.projects LO1504
utb.fulltext.projects CZ.1.05/2.1.00/19.0409
utb.fulltext.projects IGA/CPS/2015/006
utb.fulltext.projects IGA/CPS/2016/007
utb.fulltext.projects IGA/CPS/2017/008
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International