Kontaktujte nás | Jazyk: čeština English
dc.title | Magnetorheological characterization and electrospinnability of ultrasound-treated polymer solutions containing magnetic nanoparticles | en |
dc.contributor.author | Peer, Petra | |
dc.contributor.author | Stěnička, Martin | |
dc.contributor.author | Filip, Petr | |
dc.contributor.author | Pizúrová, Naděžda | |
dc.contributor.author | Babayan, Vladimir Artur | |
dc.relation.ispartof | Colloid and Polymer Science | |
dc.identifier.issn | 0303-402X Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 296 | |
utb.relation.issue | 11 | |
dc.citation.spage | 1849 | |
dc.citation.epage | 1855 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.identifier.doi | 10.1007/s00396-018-4411-y | |
dc.relation.uri | https://link.springer.com/article/10.1007/s00396-018-4411-y | |
dc.subject | Magnetorheological efficiency | en |
dc.subject | Magnetic nanoparticles | en |
dc.subject | Ultrasound treatment | en |
dc.subject | Poly(ethylene oxide) solution | en |
dc.subject | Electrospun nanofibres | en |
dc.description.abstract | In order to fabricate a magnetic nanofibrous membrane by electrospinning, it is necessary to follow a suitable method for incorporating nanoparticles into a polymer solution. Ultrasound treatment represents a very effective technique for distributing magnetic nanoparticles within polymer solutions. Adverse effects caused by sonication over time on the given nanofibrous membrane (polymer degradation and appearance of defects) were evaluated by using rotational (magneto)rheometry, transmission and scanning electron microscopy, and magnetometry. A magnetorheological approach was selected to estimate the optimal duration of sonication, and findings were experimentally verified. It was concluded that the processed nanofibrous membrane showed promise as an advanced magnetoactive device. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1008288 | |
utb.identifier.obdid | 43879517 | |
utb.identifier.scopus | 2-s2.0-85054521574 | |
utb.identifier.wok | 000448691100012 | |
utb.identifier.coden | CPMSB | |
utb.source | j-wok | |
dc.date.accessioned | 2019-01-03T12:31:27Z | |
dc.date.available | 2019-01-03T12:31:27Z | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic [LO1504, CZ.02.1.01/0.0/0.0/16_013/0001823] | |
utb.contributor.internalauthor | Babayan, Vladimir Artur | |
utb.fulltext.affiliation | Petra Peer 1 & Martin Stenicka2 & Petr Filip1 & Nadezda Pizurova3 & Vladimir Babayan2 * Petra Peer peer@ih.cas.cz 1 Institute of Hydrodynamics of the Czech Academy of Sciences, 166 12 Prague 6, Czech Republic 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic 3 Institute of Physics of Materials of the Czech Academy of Sciences, 616 62 Brno, Czech Republic | |
utb.fulltext.dates | Received: 17 August 2018 / Revised: 21 September 2018 /Accepted: 22 September 2018 /Published online: 2 October 2018 | |
utb.fulltext.references | 1. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347 2. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38:963–991 3. Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials and applications. Acc Chem Res 50:1976–1987 4. Savva I, Constantinou D, Marinica O, Vasile E, Vekas L, KrasiaChistoforou T (2014) Fabrication and characterization of superparamagnetic poly(vinylpyrrolidone)/poly(L-lactide)/Fe3O4 electrospun membranes. J Magn Magn Mater 352:30–35 5. Kidkhunthod P, Nilmoung S, Mahakot S, Rodporn S, Phumying S, Maensiri S (2016) A structural study and magnetic properties of electrospun carbon/manganese ferrite (C/MnFe2O4) composite nanofibers. J Magn Magn Mater 401:436–442 6. Lee HJ, Lee SJ, Uthaman S, Thomas RG, Hyun H, Jeong YY, Cho CS, Park IK (2015) Biomedical applications of magnetically functionalized organic/inorganic hybrid nanofibres. Int J Mol Sci 16: 13661–13677 7. Zhong Y, Leung V, Wan LY, Dutz S, Ko FK, Häfeli UO (2015) Electrospun magnetic nanofibre mats – a new bondable biomaterial using remotely activated magnetic heating. J Magn Magn Mater 380:330–334 8. Tong HW, Wang M, Li ZY, Lu WW (2010) Electrospinning, characterization and in vitro biological evaluation of nanocomposite fibers containing carbonated hydroxyapatite nanoparticles. Biomed Mater 5:054111 (13 pp), 054111 9. Kim CA, Choi HJ, Kim CB, Jhon MS (1998) Drag reduction characteristics of polysaccharide xanthan gum. Macromol Rapid Commun 19:419–422 10. Sawawi M, Wang TY, Nisbet DR, Simon GP (2013) Scission of electrospun polymer fibres by ultrasonication. Polymer 54:4237–4252 11. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272 12. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621 13. Oh JS, Choi SB (2017) State of the art of medical devices featuring smart electro-rheological and magneto-rheological fluids. J King Saud Univ Sci 29:390–400 14. Felicia LJ, Vinod S, Philip J (2016) Resent advances in magnetorheology of ferrofluids (magnetic nanofluids)-a critical review. J Nanofluids 5:1–22 15. Fang FF, Liu YD, Choi HJ (2013) Electrorheological and magnetorheological response of polypyrrole/magnetite nanocomposite particles. Colloid Polym Sci 291:1781–1786 16. Peer P, Filip P, Polaskova M, Kucharczyk P, Pavlinek V (2016) The influence of sonication of poly(ethylene oxide) solutions to the quality of resulting electrospun nanofibrous mats. Polym Degrad Stabil 126:101–106 17. Sedlacik M, Moucka R, Kozakova Z, Kazantseva NE, Pavlinek V, Kuritka I, Kaman O, Peer P (2013) Correlation of structural and magnetic properties of Fe3O4 nanoparticles with their calorimetric and magnetorheological performance. J Magn Magn Mater 326:7–13 18. Peer P, Stenicka M, Pavlinek V, Filip P (2014) The storage stability of polyvinylbutyral solutions from an electrospinnability standpoint. Polym Degrad Stabil 105:134–139 19. Qin XH, Yang EL, Li N, Wang SY (2007) Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J Appl Polym Sci 103:3865–3870 20. Arayanarakul K, Choktaweesap N, Aht-ong D, Meechaisue C, Suppaphol S (2006) Effect of poly(ethylene glycol), inorganic salt, sodium dodecyl sulphate, and solvent system on electrospinning of poly(ethyle oxide). Macromol Mater Eng 291:581–591 21. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer 45:3372–3384 22. Yu JH, Fridrikh SV, Rutledge GC (2006) The role of elasticity in the formation of electrospun fibers. Polymer 47:4789–4797 23. Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6:5246–5253 24. Gao CY, Kim MW, Bae DH, Dong YZ, Piao SH, Choi HJ (2017) Fe3O4 nanoparticle-embedded polystyrene composite particles fabricated via a Shirasu porous glass membrane technique and their magnetorheology. Polymer 125:21–29 25. McKee MG, Wilkes GL, Colby RH, Long TM (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37:1760–1767 26. Jun Z, Hou HQ, Wendorff JH, Greiner A (2005) Poly(vinyl alcohol) nanofibres by electrospinning: influence of molecular weight on fibre shape. E-Polymers:037 27. Rosic R, Pelipenko J, Kocbek P, Baumgartner S, Bester-Rogac M, Kristl J (2012) The role of rheology of polymer solutions in predicting nanofibre formation by electrospinning. Eur Polym J 48:1374–1384 28. Dunlop DJ (1973) Superparamagnetic and single-domain threshold sizes in magnetite. J Geophys Res 78:1780–1793 29. Smolkova IS, Kazantseva NE, Parmar H, Babayan V, Smolka P, Saha P (2015) Correlation between coprecipitation reaction course and magneto-structural properties of iron oxide nanoparticles. Mater Chem Phys 155:178–190 | |
utb.fulltext.sponsorship | The authors P.P. and P.F. wish to express their gratitude for the institutional support they received (RVO 67985874). The authors M.S. and V.B. thank the Ministry of Education, Youth and Sports of the Czech Republic for the backing given under Program NPU I (LO1504). The author N.P. also is grateful to the Ministry of Education, Youth and Sports of the Czech Republic for its grant under the project m-IPMinfra (CZ.02.1.01/0.0/0.0/16_013/0001823). | |
utb.wos.affiliation | [Peer, Petra; Filip, Petr] Czech Acad Sci, Inst Hydrodynam, Prague 16612 6, Czech Republic; [Stenicka, Martin; Babayan, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Zlin 76001, Czech Republic; [Pizurova, Nadezda] Czech Acad Sci, Inst Phys Mat, Brno 61662, Czech Republic | |
utb.scopus.affiliation | Institute of Hydrodynamics of the Czech Academy of Sciences, Prague 6, 166 12, Czech Republic; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, 760 01, Czech Republic; Institute of Physics of Materials of the Czech Academy of Sciences, Brno, 616 62, Czech Republic | |
utb.fulltext.projects | RVO 67985874 | |
utb.fulltext.projects | CZ.02.1.01/0.0/0.0/16_013/0001823 |