Kontaktujte nás | Jazyk: čeština English
dc.title | Clustering analysis of the population in Db_SHADE algorithm | en |
dc.contributor.author | Viktorin, Adam | |
dc.contributor.author | Šenkeřík, Roman | |
dc.contributor.author | Pluháček, Michal | |
dc.contributor.author | Kadavý, Tomáš | |
dc.relation.ispartof | Mendel | |
dc.identifier.issn | 1803-3814 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 24 | |
utb.relation.issue | 1 | |
dc.citation.spage | 9 | |
dc.citation.epage | 16 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Brno University of Technology | |
dc.identifier.doi | 10.13164/mendel.2018.1.009 | |
dc.relation.uri | https://mendel-journal.org/index.php/mendel/article/view/13 | |
dc.subject | DBSCAN | en |
dc.subject | differential evolution | en |
dc.subject | distance based parameter adaptation | en |
dc.subject | SHADE | en |
dc.description.abstract | This paper provides an analysis of the population clustering in a novel Success-History based Adaptive Differential Evolution algorithm with Distance based adaptation (Db_SHADE) in order to analyze the exploration and exploitation abilities of the algorithm. The comparison with the original SHADE algorithm is performed on the CEC2015 benchmark set in two dimensional settings (10D and 30D). The clustering analysis helps to answer the question about prolonged exploration phase of the Db_SHADE algorithm. Possible future research directions are drawn in the discussion and conclusion. © 2018, Brno University of Technology. All rights reserved. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1009089 | |
utb.identifier.obdid | 43881154 | |
utb.identifier.scopus | 2-s2.0-85072046299 | |
utb.source | j-scopus | |
dc.date.accessioned | 2019-09-19T07:56:15Z | |
dc.date.available | 2019-09-19T07:56:15Z | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | CEBIA-Tech | |
utb.contributor.internalauthor | Viktorin, Adam | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.contributor.internalauthor | Pluháček, Michal | |
utb.contributor.internalauthor | Kadavý, Tomáš | |
utb.fulltext.affiliation | Adam Viktorin, Roman Senkerik, Michal Pluhacek, Tomas Kadavy Tomas Bata University in Zlin Faculty of Applied Informatics T. G. Masaryka 5555, 760 01 Zlin Czech Republic {aviktorin, senkerik, pluhacek, kadavy}@utb.cz | |
utb.fulltext.dates | - | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014), further by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2018/003. This work is also based upon support by COST (European Cooperation in Science & Technology) under Action CA15140, Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO), and Action IC1406, High-Performance Modelling and Simulation for Big Data Applications (cHiPSet). The work was further supported by resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Faculty of Applied Informatics, T. G. Masaryka 5555, Zlin, 760 01, Czech Republic | |
utb.fulltext.projects | LO1303 | |
utb.fulltext.projects | MSMT-7778/2014 | |
utb.fulltext.projects | CZ.1.05/2.1.00/03.0089 | |
utb.fulltext.projects | IGA/CebiaTech/2018/003 | |
utb.fulltext.projects | CA15140 | |
utb.fulltext.projects | IC1406 | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics |