Publikace UTB
Repozitář publikační činnosti UTB

On the application of complex network analysis for metaheuristics

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title On the application of complex network analysis for metaheuristics en
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Pluháček, Michal
dc.contributor.author Viktorin, Adam
dc.contributor.author Janoštík, Jakub
dc.relation.ispartof Proceedings of the 7th International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2016
dc.identifier.isbn 978-961264093-4
dc.date.issued 2016
dc.citation.spage 201
dc.citation.epage 213
dc.event.title 7th International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2016
dc.event.location Bled
utb.event.state-en Slovenia
utb.event.state-cs Slovinsko
dc.event.sdate 2016-05-18
dc.event.edate 2016-05-20
dc.type conferenceObject
dc.language.iso en
dc.publisher Jozef Stefan Institute
dc.relation.uri https://www.semanticscholar.org/paper/ON-THE-APPLICATION-OF-COMPLEX-NETWORK-ANALYSIS-FOR-Senkerik-Pluhacek/ce58d963d1c19b798a7086258afcf806682a089c
dc.subject complex networks en
dc.subject differential evolution en
dc.subject particle swarm optimization en
dc.subject population dynamics en
dc.description.abstract This contribution deals with the hybridisation of complex network frameworks and metaheuristic algorithms. The population is visualised as an evolving complex network that exhibits non-trivial features. It briefly investigates the time and structure development of a complex network within a run of selected metaheuristic algorithms – i.e., PSO and Differential Evolution (DE). Two different approaches for the construction of complex networks are presented herein. It also briefly discusses the possible utilisation of complex network attributes. These attributes include an adjacency graph that depicts interconnectivity, while centralities provide an overview of convergence and stagnation, and clustering encapsulates the diversity of the population, whereas other attributes show the efficiency of the network. The experiments were performed for one selected DE/PSO strategy and one simple test function. © Proceedings of the 7th International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2016. All rights reserved. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1009613
utb.identifier.obdid 43876355
utb.identifier.scopus 2-s2.0-85050594649
utb.source d-scopus
dc.date.accessioned 2020-03-26T10:44:53Z
dc.date.available 2020-03-26T10:44:53Z
utb.ou Department of Informatics and Artificial Intelligence
utb.ou CEBIA-Tech
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Janoštík, Jakub
utb.fulltext.sponsorship This work was supported by the Grant Agency of the Czech Republic { GACR P103/15/06700S; and by the Internal Grant Agency of Tomas Bata University, Project No. IGA/CebiaTech/2016/007.
utb.scopus.affiliation Department of Informatics and Artificial Intelligence, Faculty of Applied Informatics, Tomas Bata University, Zlin, Czech Republic
utb.fulltext.projects GACR P103/15/06700S
utb.fulltext.projects IGA/CebiaTech/2016/007
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam