Kontaktujte nás | Jazyk: čeština English
Název: | Chaos-enhanced multiple-choice strategy for particle swarm optimisation | ||||||||||
Autor: | Pluháček, Michal; Šenkeřík, Roman; Viktorin, Adam; Kadavý, Tomáš | ||||||||||
Typ dokumentu: | Recenzovaný odborný článek (English) | ||||||||||
Zdrojový dok.: | International Journal of Parallel, Emergent and Distributed Systems. 2020, vol. 35, issue 6, p. 603-616 | ||||||||||
ISSN: | 1744-5760 (Sherpa/RoMEO, JCR) | ||||||||||
Journal Impact
This chart shows the development of journal-level impact metrics in time
|
|||||||||||
DOI: | https://doi.org/10.1080/17445760.2018.1487064 | ||||||||||
Abstrakt: | In this paper, we use pseudo-random number generators based on six chaotic systems to enhance the performance of multiple-choice strategy for particle swarm optimisation (PSO). The multiple-choice strategy is a heterogeneous swarm-based method. We present the results of benchmark testing using the latest CEC’17 benchmark suite. The performance of the proposed method is compared with the canonical PSO and evaluated for statistical significance. Utilising of pseudo-random number generators based on six chaotic systems to enhance the performance of multiple-choice strategy for particle swarm optimization. © 2018 Informa UK Limited, trading as Taylor & Francis Group. | ||||||||||
Plný text: | https://www.tandfonline.com/doi/abs/10.1080/17445760.2018.1487064 | ||||||||||
Zobrazit celý záznam |