Publikace UTB
Repozitář publikační činnosti UTB

Supervised classification methods for fake news identification

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Supervised classification methods for fake news identification en
dc.contributor.author Truong, Thanh Cong
dc.contributor.author Diep, Quoc Bao
dc.contributor.author Zelinka, Ivan
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.identifier.issn 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-03-061533-8
dc.date.issued 2020
utb.relation.volume 12416 LNAI
dc.citation.spage 445
dc.citation.epage 454
dc.event.title 19th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2020
dc.event.location Zakopane
utb.event.state-en Poland
utb.event.state-cs Polsko
dc.event.sdate 2020-10-12
dc.event.edate 2020-10-14
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-030-61534-5_40
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-030-61534-5_40
dc.subject deep learning en
dc.subject fake news en
dc.subject machine learning en
dc.subject supervised classification en
dc.description.abstract Along with the rapid increase in the popularity of online media, the proliferation of fake news and its propagation is also rising. Fake news can propagate with an uncontrollable speed without verification and can cause severe damages. Various machine learning and deep learning approaches have been attempted to classify the real and the false news. In this research, the author group presents a comprehensive performance evaluation of eleven supervised algorithms on three datasets for fake news classification. © 2020, Springer Nature Switzerland AG. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010051
utb.identifier.obdid 43882340
utb.identifier.scopus 2-s2.0-85096571526
utb.source d-scopus
dc.date.accessioned 2020-12-09T01:52:46Z
dc.date.available 2020-12-09T01:52:46Z
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.affiliation Thanh Cong Truong1, Quoc Bao Diep 1, Ivan Zelinka 1, Roman Senkerik 2 1 Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Ostrava, Czech Republic {cong.thanh.truong.st,ivan.zelinka}@vsb.cz, diepquocbao@gmail.com 2 Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, 760 01 Zlin, Czech Republic senkerik@utb.cz
utb.fulltext.dates -
utb.fulltext.sponsorship The following grants are acknowledged for the financial support provided for this research: Grant of SGS No. SP2020/78, VSB Technical University of Ostrava.
utb.scopus.affiliation Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, Ostrava, 708 00, Czech Republic; Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, Zlin, 760 01, Czech Republic
utb.fulltext.projects SP2020/78
utb.fulltext.faculty Faculty of Applied Informatics
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam