Kontaktujte nás | Jazyk: čeština English
dc.title | AdamOptimizer for the optimisation of Use Case Points estimation | en |
dc.contributor.author | Huynh Thai, Hoc | |
dc.contributor.author | Vo Van, Hai | |
dc.contributor.author | Ho, Le Thi Kim Nhung | |
dc.relation.ispartof | Advances in Intelligent Systems and Computing | |
dc.identifier.issn | 2194-5357 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-3-03-063321-9 | |
dc.date.issued | 2020 | |
utb.relation.volume | 1294 | |
dc.citation.spage | 747 | |
dc.citation.epage | 756 | |
dc.event.title | 4th Computational Methods in Systems and Software, CoMeSySo 2020 | |
dc.event.location | online | |
dc.event.sdate | 2020-10-14 | |
dc.event.edate | 2020-10-17 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-3-030-63322-6_63 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-030-63322-6_63 | |
dc.subject | Adam | en |
dc.subject | AdamOptimizer | en |
dc.subject | algorithmic optimisation method | en |
dc.subject | gradient descent | en |
dc.subject | software effort estimation | en |
dc.subject | Tensorflow | en |
dc.subject | Use Case Points | en |
dc.description.abstract | Use Case Points is considered to be one of the most popular methods to estimate the size of a developed software project. Many approaches have been proposed to optimise Use Case Points. The Algorithmic Optimisation Method uses the Multiple Least Squares method to improve the accuracy of Use Case Points by finding optimal coefficient regressions, based on the historical data. This paper aims to propose a new approach to optimise the Use Case Points method based on Gradient Descent with the support of the TensorFlow package. The significance of its purpose is to conduct a new approach that might lead to more accurate prediction than that of the Use Case Points and the Algorithmic Optimisation Method. As a result, this new approach outweighs both the Use Case Points and the Algorithmic Optimisation Methods. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1010145 | |
utb.identifier.obdid | 43882280 | |
utb.identifier.scopus | 2-s2.0-85098176472 | |
utb.source | d-scopus | |
dc.date.accessioned | 2021-01-08T14:02:34Z | |
dc.date.available | 2021-01-08T14:02:34Z | |
utb.contributor.internalauthor | Huynh Thai, Hoc | |
utb.contributor.internalauthor | Vo Van, Hai | |
utb.contributor.internalauthor | Ho, Le Thi Kim Nhung | |
utb.fulltext.affiliation | Huynh Thai Hoc, Vo Van Hai, Ho Le Thi Kim Nhung Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, 76001 Zlin, Czech Republic {huynh_thai,vo_van,lho}@utb.cz | |
utb.fulltext.dates | - | |
utb.fulltext.sponsorship | This work was supported by the Faculty of Applied Informatics, Tomas Bata University in Zlín, under Project SV13202001020-PU30, Project IGA/CebiaTech/ 2020/001, and Project RVO/FAI/2020/002. | |
utb.scopus.affiliation | Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin, 76001, Czech Republic | |
utb.fulltext.projects | SV13202001020-PU30 | |
utb.fulltext.projects | IGA/CebiaTech/ 2020/001 | |
utb.fulltext.projects | RVO/FAI/2020/002 | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics |