Publikace UTB
Repozitář publikační činnosti UTB

AdamOptimizer for the optimisation of Use Case Points estimation

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title AdamOptimizer for the optimisation of Use Case Points estimation en
dc.contributor.author Huynh Thai, Hoc
dc.contributor.author Vo Van, Hai
dc.contributor.author Ho, Le Thi Kim Nhung
dc.relation.ispartof Advances in Intelligent Systems and Computing
dc.identifier.issn 2194-5357 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-03-063321-9
dc.date.issued 2020
utb.relation.volume 1294
dc.citation.spage 747
dc.citation.epage 756
dc.event.title 4th Computational Methods in Systems and Software, CoMeSySo 2020
dc.event.location online
dc.event.sdate 2020-10-14
dc.event.edate 2020-10-17
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-030-63322-6_63
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-030-63322-6_63
dc.subject Adam en
dc.subject AdamOptimizer en
dc.subject algorithmic optimisation method en
dc.subject gradient descent en
dc.subject software effort estimation en
dc.subject Tensorflow en
dc.subject Use Case Points en
dc.description.abstract Use Case Points is considered to be one of the most popular methods to estimate the size of a developed software project. Many approaches have been proposed to optimise Use Case Points. The Algorithmic Optimisation Method uses the Multiple Least Squares method to improve the accuracy of Use Case Points by finding optimal coefficient regressions, based on the historical data. This paper aims to propose a new approach to optimise the Use Case Points method based on Gradient Descent with the support of the TensorFlow package. The significance of its purpose is to conduct a new approach that might lead to more accurate prediction than that of the Use Case Points and the Algorithmic Optimisation Method. As a result, this new approach outweighs both the Use Case Points and the Algorithmic Optimisation Methods. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010145
utb.identifier.obdid 43882280
utb.identifier.scopus 2-s2.0-85098176472
utb.source d-scopus
dc.date.accessioned 2021-01-08T14:02:34Z
dc.date.available 2021-01-08T14:02:34Z
utb.contributor.internalauthor Huynh Thai, Hoc
utb.contributor.internalauthor Vo Van, Hai
utb.contributor.internalauthor Ho, Le Thi Kim Nhung
utb.fulltext.affiliation Huynh Thai Hoc, Vo Van Hai, Ho Le Thi Kim Nhung Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, 76001 Zlin, Czech Republic {huynh_thai,vo_van,lho}@utb.cz
utb.fulltext.dates -
utb.fulltext.sponsorship This work was supported by the Faculty of Applied Informatics, Tomas Bata University in Zlín, under Project SV13202001020-PU30, Project IGA/CebiaTech/ 2020/001, and Project RVO/FAI/2020/002.
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin, 76001, Czech Republic
utb.fulltext.projects SV13202001020-PU30
utb.fulltext.projects IGA/CebiaTech/ 2020/001
utb.fulltext.projects RVO/FAI/2020/002
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam