Kontaktujte nás | Jazyk: čeština English
dc.title | Sensitivities of rheological properties of magnetoactive foam for soft sensor technology | en |
dc.contributor.author | Norhaniza, Rizuan | |
dc.contributor.author | Mazlan, Saiful Amri | |
dc.contributor.author | Ubaidillah, Ubaidillah | |
dc.contributor.author | Sedlačík, Michal | |
dc.contributor.author | Aziz, Siti Aishah Abdul | |
dc.contributor.author | Nazmi, Nurhazimah | |
dc.contributor.author | Homma, Koji | |
dc.contributor.author | Rambat, Shuib | |
dc.relation.ispartof | Sensors | |
dc.identifier.issn | 1424-8220 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2021 | |
utb.relation.volume | 21 | |
utb.relation.issue | 5 | |
dc.citation.spage | 1 | |
dc.citation.epage | 19 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI AG | |
dc.identifier.doi | 10.3390/s21051660 | |
dc.relation.uri | https://www.mdpi.com/1424-8220/21/5/1660 | |
dc.subject | magnetostriction | en |
dc.subject | normal force | en |
dc.subject | porous polymer | en |
dc.subject | magnetic dipolar interaction | en |
dc.description.abstract | Magnetoactive (MA) foam, with its tunable mechanical properties and magnetostriction, has the potential to be used for the development of soft sensor technology. However, researchers have found that its mechanical properties and magnetostriction are morphologically dependent, thereby limiting its capabilities for dexterous manipulation. Thus, in this work, MA foam was developed with additional capabilities for controlling its magnetostriction, normal force, storage modulus, shear stress and torque by manipulating the concentration of carbonyl iron particles (CIPs) and the magnetic field with regard to morphological changes. MA foams were prepared with three weight percentages of CIPs, namely, 35 wt.%, 55 wt.% and 75 wt.%, and three different modes, namely, zero shear, constant shear and various shears. The results showed that the MA foam with 75 wt.% of CIPs enhanced the normal force sensitivity and positive magnetostriction sensitivity by up to 97% and 85%, respectively. Moreover, the sensitivities of the storage modulus, torque and shear stress were 8.97 Pa/mT, 0.021 µN/mT, and 0.0096 Pa/mT, respectively. Meanwhile, the magnetic dipolar interaction between the CIPs was capable of changing the property of MA foam from a positive to a negative magnetostriction under various shear strains with a low loss of energy. Therefore, it is believed that this kind of highly sensitive MA foam can potentially be implemented in future soft sensor systems. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1010231 | |
utb.identifier.obdid | 43882475 | |
utb.identifier.scopus | 2-s2.0-85101679816 | |
utb.identifier.wok | 000628551500001 | |
utb.source | j-scopus | |
dc.date.accessioned | 2021-03-12T14:35:05Z | |
dc.date.available | 2021-03-12T14:35:05Z | |
dc.description.sponsorship | Universiti Teknologi Malaysia through Collaborative Research Grant (CRG) [08G79]; Professional Development Research University (PDRU) [05E21]; Universitas Sebelas Maret, Hibah Non APBN 2021, LPPM-UNS; Ministry of Education, Youth and Sports of the Czech RepublicMinistry of Education, Youth & Sports - Czech Republic [RP/CPS/2020/006] | |
dc.description.sponsorship | 05E21; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Universiti Teknologi Malaysia, UTM: 08G79; Universitas Sebelas Maret, UNS: RP/CPS/2020/006 | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Sedlačík, Michal | |
utb.fulltext.sponsorship | This research was funded by Universiti Teknologi Malaysia through Collaborative Research Grant (CRG) (Vot. No. 08G79) and Professional Development Research University (PDRU) (Vot. No.05E21). This research was also funded by Universitas Sebelas Maret, Hibah Non APBN 2021, LPPM-UNS. The author M.S. gratefully acknowledge project DKRVO (RP/CPS/2020/006) supported by the Ministry of Education, Youth and Sports of the Czech Republic. | |
utb.wos.affiliation | [Norhaniza, Rizuan; Mazlan, Saiful Amri; Aziz, Siti Aishah Abdul; Nazmi, Nurhazimah] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol MJIIT, Engn Mat & Struct eMast iKohza, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; [Mazlan, Saiful Amri; Homma, Koji; Rambat, Shuib] Tokyo City Univ, Int Ctr, Setagaya Ku, 1 Chrome-28-1 Tamazutmi, Tokyo 1580087, Japan; [Ubaidillah, Ubaidillah] Univ Sebelas Maret, Fac Engn, Jalan Ir Sutami 36A, Surakarta 57126, Central Java, Indonesia; [Sedlacik, Michal] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic; [Rambat, Shuib] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol MJIIT, Disaster Preparedness & Prevent Ctr DPPC, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia | |
utb.scopus.affiliation | Engineering Materials and Structures (eMast) iKohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia; International Center, Tokyo City University, 1 Chrome-28-1 Tamazutmi, Setagaya, Tokyo, 1580087, Japan; Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta, Central Java, 57126, Indonesia; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, Zlín, 760 01, Czech Republic; Disaster Preparedness & Prevention Centre (DPPC), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia | |
utb.fulltext.projects | 08G79 | |
utb.fulltext.projects | 05E21 | |
utb.fulltext.projects | APBN 2021 | |
utb.fulltext.projects | LPPM-UNS | |
utb.fulltext.projects | RP/CPS/2020/006 |