Publikace UTB
Repozitář publikační činnosti UTB

How does the number of objective function evaluations impact our understanding of metaheuristics behavior?

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title How does the number of objective function evaluations impact our understanding of metaheuristics behavior? en
dc.contributor.author Kazíková, Anežka
dc.contributor.author Pluháček, Michal
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2021
utb.relation.volume 9
dc.citation.spage 44032
dc.citation.epage 44048
dc.type article
dc.language.iso en
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc
dc.identifier.doi 10.1109/ACCESS.2021.3066135
dc.relation.uri https://ieeexplore.ieee.org/document/9378523
dc.subject optimization en
dc.subject benchmark testing en
dc.subject iron en
dc.subject linear programming en
dc.subject heuristic algorithms en
dc.subject convergence en
dc.subject statistics en
dc.subject evolutionary computation en
dc.subject computational intelligence en
dc.subject performance evaluation en
dc.subject cost function en
dc.subject optimization en
dc.subject benchmark testing en
dc.subject optimization methods en
dc.description.abstract Comparing various metaheuristics based on an equal number of objective function evaluations has become standard practice. Many contemporary publications use a specific number of objective function evaluations by the benchmarking sets definitions. Furthermore, many publications deal with the recurrent theme of late stagnation, which may lead to the impression that continuing the optimization process could be a waste of computational capabilities. But is it? Recently, many challenges, issues, and questions have been raised regarding fair comparisons and recommendations towards good practices for benchmarking metaheuristic algorithms. The aim of this work is not to compare the performance of several well-known algorithms but to investigate the issues that can appear in benchmarking and comparisons of metaheuristics performance (no matter what the problem is). This article studies the impact of a higher evaluation number on a selection of metaheuristic algorithms. We examine the effect of a raised evaluation budget on overall performance, mean convergence, and population diversity of selected swarm algorithms and IEEE CEC competition winners. Even though the final impact varies based on current algorithm selection, it may significantly affect the final verdict of metaheuristics comparison. This work has picked an important benchmarking issue and made extensive analysis, resulting in conclusions and possible recommendations for users working with real engineering optimization problems or researching the metaheuristics algorithms. Especially nowadays, when metaheuristic algorithms are used for increasingly complex optimization problems, and meet machine learning in AutoML frameworks, we conclude that the objective function evaluation budget should be considered another vital optimization input variable. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010275
utb.identifier.obdid 43883337
utb.identifier.scopus 2-s2.0-85103755169
utb.identifier.wok 000633380900001
utb.source J-wok
dc.date.accessioned 2021-04-07T07:50:44Z
dc.date.available 2021-04-07T07:50:44Z
dc.description.sponsorship Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2021/001]; AI Laboratory, Faculty of Applied Informatics, Tomas Bata University in Zlin
dc.description.sponsorship IGA/CebiaTech/2021/001; Univerzita Tomáše Bati ve Zlíně
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Kazíková, Anežka
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.sponsorship This work was supported in part by the Internal Grant Agency of Tomas Bata University under Project IGA/CebiaTech/2021/001, and inpart by the resources of AI Laboratory, Faculty of Applied Informatics, Tomas Bata University in Zlin
utb.wos.affiliation [Kazikova, Anezka; Pluhacek, Michal; Senkerik, Roman] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin 76001, Czech Republic
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin, 76001, Czech Republic.; Faculty of Applied Informatics, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin, 76001, Czech Republic. (e-mail: senkerik@utb.cz)
utb.fulltext.projects IGA/CebiaTech/2021/001
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International