Kontaktujte nás | Jazyk: čeština English
dc.title | Numerical gridding stability charts estimation using quasi-polynomial approximation for TDS | en |
dc.contributor.author | Pekař, Libor | |
dc.contributor.author | Strmiska, Martin | |
dc.contributor.author | Song, Mengjie | |
dc.contributor.author | Dostálek, Petr | |
dc.relation.ispartof | Proceedings of the 2021 23rd International Conference on Process Control, PC 2021 | |
dc.identifier.isbn | 978-1-66540-330-6 | |
dc.date.issued | 2021 | |
dc.citation.spage | 290 | |
dc.citation.epage | 295 | |
dc.event.title | 23rd International Conference on Process Control, PC 2021 | |
dc.event.location | Štrbské pleso | |
utb.event.state-en | Slovakia | |
utb.event.state-cs | Slovensko | |
dc.event.sdate | 2021-06-01 | |
dc.event.edate | 2021-06-04 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.identifier.doi | 10.1109/PC52310.2021.9447521 | |
dc.relation.uri | https://ieeexplore.ieee.org/document/9447521 | |
dc.subject | constant delay | en |
dc.subject | numerical method | en |
dc.subject | quasipolynomial approximation | en |
dc.subject | stability charts | en |
dc.subject | time delay systems | en |
dc.description.abstract | The aim of this study is to present and summarize our numerical algorithm for the determination of stability charts in the delay space for linear time-invariant time systems with constant delays (TDS), both retarded and neutral ones. The core of algorithm lies in a successive (iterative) approximation of the infinite-dimensional characteristic quasi-polynomial in each grid node of the delay space. This approximation resulting in a polynomial or an exponential polynomial with commensurate delays is made in the neighborhood of the dominant characteristic value (pole) that has recently been estimated in the closest grid node. Two different approximation techniques are presented; namely, continuous-time and discrete-time ones. A complete numerical example for retarded TDS is presented, whereas the approximation issues are highlighted in another example for neutral TDS. © 2021 IEEE. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1010470 | |
utb.identifier.obdid | 43883141 | |
utb.identifier.scopus | 2-s2.0-85111351113 | |
utb.identifier.wok | 000723653400049 | |
utb.source | d-scopus | |
dc.date.accessioned | 2021-08-17T07:36:50Z | |
dc.date.available | 2021-08-17T07:36:50Z | |
utb.contributor.internalauthor | Pekař, Libor | |
utb.contributor.internalauthor | Strmiska, Martin | |
utb.contributor.internalauthor | Dostálek, Petr | |
utb.wos.affiliation | [Pekar, Libor; Strmiska, Martin; Dostalek, Petr] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin, Czech Republic; [Song, Mengjie] Beijing Inst Technol, Sch Mech Engn, Beijing, Peoples R China | |
utb.scopus.affiliation | Tomas Bata University in Zlín, Faculty of Applied Informatics, Zlín, Czech Republic |