Publikace UTB
Repozitář publikační činnosti UTB

Numerical gridding stability charts estimation using quasi-polynomial approximation for TDS

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Numerical gridding stability charts estimation using quasi-polynomial approximation for TDS en
dc.contributor.author Pekař, Libor
dc.contributor.author Strmiska, Martin
dc.contributor.author Song, Mengjie
dc.contributor.author Dostálek, Petr
dc.relation.ispartof Proceedings of the 2021 23rd International Conference on Process Control, PC 2021
dc.identifier.isbn 978-1-66540-330-6
dc.date.issued 2021
dc.citation.spage 290
dc.citation.epage 295
dc.event.title 23rd International Conference on Process Control, PC 2021
dc.event.location Štrbské pleso
utb.event.state-en Slovakia
utb.event.state-cs Slovensko
dc.event.sdate 2021-06-01
dc.event.edate 2021-06-04
dc.type conferenceObject
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/PC52310.2021.9447521
dc.relation.uri https://ieeexplore.ieee.org/document/9447521
dc.subject constant delay en
dc.subject numerical method en
dc.subject quasipolynomial approximation en
dc.subject stability charts en
dc.subject time delay systems en
dc.description.abstract The aim of this study is to present and summarize our numerical algorithm for the determination of stability charts in the delay space for linear time-invariant time systems with constant delays (TDS), both retarded and neutral ones. The core of algorithm lies in a successive (iterative) approximation of the infinite-dimensional characteristic quasi-polynomial in each grid node of the delay space. This approximation resulting in a polynomial or an exponential polynomial with commensurate delays is made in the neighborhood of the dominant characteristic value (pole) that has recently been estimated in the closest grid node. Two different approximation techniques are presented; namely, continuous-time and discrete-time ones. A complete numerical example for retarded TDS is presented, whereas the approximation issues are highlighted in another example for neutral TDS. © 2021 IEEE. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010470
utb.identifier.obdid 43883141
utb.identifier.scopus 2-s2.0-85111351113
utb.identifier.wok 000723653400049
utb.source d-scopus
dc.date.accessioned 2021-08-17T07:36:50Z
dc.date.available 2021-08-17T07:36:50Z
utb.contributor.internalauthor Pekař, Libor
utb.contributor.internalauthor Strmiska, Martin
utb.contributor.internalauthor Dostálek, Petr
utb.wos.affiliation [Pekar, Libor; Strmiska, Martin; Dostalek, Petr] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin, Czech Republic; [Song, Mengjie] Beijing Inst Technol, Sch Mech Engn, Beijing, Peoples R China
utb.scopus.affiliation Tomas Bata University in Zlín, Faculty of Applied Informatics, Zlín, Czech Republic
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam