Publikace UTB
Repozitář publikační činnosti UTB

An efficient parallel algorithm for mining weighted clickstream patterns

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title An efficient parallel algorithm for mining weighted clickstream patterns en
dc.contributor.author Huynh, Minh Huy
dc.contributor.author Nguyen, Loan T.T.
dc.contributor.author Vo, Bay
dc.contributor.author Komínková Oplatková, Zuzana
dc.contributor.author Fournier-Viger, Philippe
dc.contributor.author Yun, Unil
dc.relation.ispartof Information Sciences
dc.identifier.issn 0020-0255 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 582
dc.citation.spage 349
dc.citation.epage 368
dc.type article
dc.language.iso en
dc.publisher Elsevier Inc.
dc.identifier.doi 10.1016/j.ins.2021.08.070
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0020025521008781
dc.subject frequent pattern mining en
dc.subject weighted clickstream patterns en
dc.subject parallelism en
dc.description.abstract In the Internet age, analyzing the behavior of online users can help webstore owners understand customers’ interests. Insights from such analysis can be used to improve both user experience and website design. A prominent task for online behavior analysis is clickstream mining, which consists of identifying customer browsing patterns that reveal how users interact with websites. Recently, this task was extended to consider weights to find more impactful patterns. However, most algorithms for mining weighted clickstream patterns are serial algorithms, which are sequentially executed from the start to the end on one running thread. In real life, data is often very large, and serial algorithms can have long runtimes as they do not fully take advantage of the parallelism capabilities of modern multi-core CPUs. To address this limitation, this paper presents two parallel algorithms named DPCompact-SPADE (Depth load balancing Parallel Compact-SPADE) and APCompact-SPADE (Adaptive Parallel Compact-SPADE) for weighted clickstream pattern mining. Experiments on various datasets show that the proposed parallel algorithm is efficient, and outperforms state-of-the-art serial algorithms in terms of runtime, memory consumption, and scalability. © 2021 Elsevier Inc. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010585
utb.identifier.obdid 43884051
utb.identifier.scopus 2-s2.0-85115427566
utb.identifier.wok 000705073700006
utb.identifier.coden ISIJB
utb.source j-scopus
dc.date.accessioned 2021-10-08T21:13:50Z
dc.date.available 2021-10-08T21:13:50Z
dc.description.sponsorship Vietnam National Foundation for Science and Technology Development (NAFOSTED)National Foundation for Science & Technology Development (NAFOSTED) [02/2019/TN]
dc.description.sponsorship National Foundation for Science and Technology Development, NAFOSTED: 02/2019/TN
utb.contributor.internalauthor Huynh, Minh Huy
utb.contributor.internalauthor Komínková Oplatková, Zuzana
utb.fulltext.affiliation Huy M. Huynh a , Loan T.T. Nguyen b,c , Bay Vo d,* , Zuzana Komínková Oplatková a , Philippe Fournier-Viger e , Unil Yun f a Faculty of Applied Informatics, Tomas Bata University in Zlín, Nám. T.G. Masaryka 5555, Zlín 76001, Czech Republic b School of Computer Science and Engineering, International University, Ho Chi Minh City 700000, Viet Nam c Vietnam National University, Ho Chi Minh City 700000, Viet Nam d Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam e School of Humanities and Social Sciences, Harbin Institute of Technology, Shenzhen 518055, China f Department of Computer Engineering, Sejong University, Seoul 05006, Republic of Korea *Corresponding author. E-mail addresses: huynh@utb.cz (H.M. Huynh), nttloan@hcmiu.edu.vn (L.T.T. Nguyen), vd.bay@hutech.edu.vn (B. Vo), oplatkova@utb.cz (Z.K. Oplatková), philfv@hit.edu.cn (P. Fournier-Viger), yunei@sejong.ac.kr (U. Yun).
utb.fulltext.dates Received 21 July 2020 Received in revised form 19 August 2021 Accepted 20 August 2021 Available online 25 August 2021
utb.fulltext.sponsorship This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 02/2019/TN.
utb.wos.affiliation [Huynh, Huy M.; Oplatkova, Zuzana Kominkova] Tomas Bata Univ Zlin, Fac Appl Informat, Nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Nguyen, Loan T. T.] Int Univ, Sch Comp Sci & Engn, Ho Chi Minh City 700000, Vietnam; [Nguyen, Loan T. T.] Vietnam Natl Univ, Ho Chi Minh City 700000, Vietnam; [Vo, Bay] Ho Chi Minh City Univ Technol HUTECH, Fac Informat Technol, Ho Chi Minh City 700000, Vietnam; [Fournier-Viger, Philippe] Harbin Inst Technol, Sch Human & Social Sci, Shenzhen 518055, Peoples R China; [Yun, Unil] Sejong Univ, Dept Comp Engn, Seoul 05006, South Korea
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlín, Nám. T.G. Masaryka 5555, Zlín, 76001, Czech Republic; School of Computer Science and Engineering, International University, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, 700000, Viet Nam; School of Humanities and Social Sciences, Harbin Institute of Technology, Shenzhen, 518055, China; Department of Computer Engineering, Sejong University, Seoul, 05006, South Korea
utb.fulltext.projects 02/2019/TN
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam