Kontaktujte nás | Jazyk: čeština English
dc.title | Value set-based numerical analysis of robust stability for fractional-order retarded quasi-polynomials with uncertain parameters and uncertain fractional orders | en |
dc.contributor.author | Matušů, Radek | |
dc.contributor.author | Senol, Bilal | |
dc.contributor.author | Alagoz, Baris Baykant | |
dc.contributor.author | Ates, Abdullah | |
dc.relation.ispartof | Lecture Notes in Networks and Systems | |
dc.identifier.issn | 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-3-03-090320-6 | |
dc.date.issued | 2021 | |
utb.relation.volume | 231 LNNS | |
dc.citation.spage | 18 | |
dc.citation.epage | 23 | |
dc.event.title | 5th Computational Methods in Systems and Software, CoMeSySo 2021 | |
dc.event.location | online | |
dc.event.sdate | 2021-10-01 | |
dc.event.edate | 2021-10-01 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-3-030-90321-3_3 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-030-90321-3_3 | |
dc.subject | fractional-order systems | en |
dc.subject | parametric uncertainty | en |
dc.subject | retarded quasi-polynomials | en |
dc.subject | robust stability | en |
dc.subject | uncertain fractional orders | en |
dc.subject | value set | en |
dc.subject | zero exclusion principle | en |
dc.description.abstract | This example-oriented contribution deals with the value set-based numerical analysis of robust stability for the family of fractional-order retarded quasi-polynomials with both uncertain parameters and uncertain fractional orders. The specific investigated feedback control system consists of the fractional-order PID controller and the controlled plant, represented by a heat transfer process described by the linear time-invariant fractional-order time-delay model with parametric uncertainty (with three uncertain parameters, namely, gain, fractional time constant, and fractional time-delay term, and furthermore two fractional orders). The graphical robust stability analysis is based on the numerical calculation of the value sets and the application of the zero exclusion principle. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1010725 | |
utb.identifier.obdid | 43883098 | |
utb.identifier.scopus | 2-s2.0-85120684997 | |
utb.source | d-scopus | |
dc.date.accessioned | 2021-12-22T11:51:35Z | |
dc.date.available | 2021-12-22T11:51:35Z | |
utb.ou | CEBIA-Tech | |
utb.contributor.internalauthor | Matušů, Radek | |
utb.fulltext.affiliation | VRATISLAV KOZÁK, PETR FUSEK Univerzita Tomáše Bati ve Zlíně, Fakulta managementu a ekonomiky, Mostní 5139, 760 01 Zlín | |
utb.fulltext.dates | Do redakce došlo 29. 1. 2004 | |
utb.fulltext.sponsorship | - | |
utb.scopus.affiliation | Centre for Security, Information and Advanced Technologies (CEBIA–Tech), Faculty of Applied Informatics, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, Zlín, 76001, Czech Republic; Department of Computer Engineering, Faculty of Engineering, Inonu University, Malatya, 44280, Turkey | |
utb.fulltext.projects | - | |
utb.fulltext.faculty | Faculty of Management and Economics | |
utb.fulltext.ou | - |