Publikace UTB
Repozitář publikační činnosti UTB

Calibrating function complexity in enhancement project for improving function points analysis estimation

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Calibrating function complexity in enhancement project for improving function points analysis estimation en
dc.contributor.author Vo Van, Hai
dc.contributor.author Ho, Le Thi Kim Nhung
dc.contributor.author Huynh Thai, Hoc
dc.relation.ispartof Lecture Notes in Networks and Systems
dc.identifier.issn 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-03-090317-6
dc.date.issued 2021
utb.relation.volume 232 LNNS
dc.citation.spage 857
dc.citation.epage 869
dc.event.title 5th Computational Methods in Systems and Software, CoMeSySo 2021
dc.event.location online
dc.event.sdate 2021-10-01
dc.event.edate 2021-10-01
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-030-90318-3_67
dc.relation.uri https://link.springer.com/chapter/10.1007%2F978-3-030-90318-3_67
dc.subject effort estimation en
dc.subject function point analysis en
dc.subject multiple linear regression en
dc.subject software measurement en
dc.description.abstract Producing a good software product on time and within budget, the initial software estimation takes a significant role. Reality has shown that most software fails because the initial software estimation is not correct. Many researchers have proposed methods for software estimation. It has been developed since the 70s of the last century, but it is still of great interest until now. We also know that creating a new software product is difficult; it is even more difficult to innovate. In the framework of this paper, we propose an improved method based on the FPA method of IFPUG. We named this proposed model is Calibrating Function Complexity in Enhancement Project (CFCEP). This method is based on the Linear Regression technique to give coefficients of function complexity. The experimental results based on the ISBSG dataset show that the estimation based on this new coefficient gives much better results than using the coefficients of the standard FPA method. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010732
utb.identifier.obdid 43882981
utb.identifier.scopus 2-s2.0-85120580616
utb.source d-scopus
dc.date.accessioned 2021-12-22T11:51:36Z
dc.date.available 2021-12-22T11:51:36Z
dc.description.sponsorship IGA/CebiaTech/2021/001
utb.contributor.internalauthor Vo Van, Hai
utb.contributor.internalauthor Ho, Le Thi Kim Nhung
utb.contributor.internalauthor Huynh Thai, Hoc
utb.fulltext.affiliation Vo Van Hai1, Ho Le Thi Kim Nhung1 and Huynh Thai Hoc 1 1 Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, Zlin 76001, Czech Republic {vo_van, lho, huynh_thai}@utb.cz
utb.fulltext.dates -
utb.fulltext.references 1. IFPUG: International Function Point Users Group. http://www.ifpug.org/, access July 2021. 2. A. J. Albrecht, "Measuring application development productivity," Proc. IBM Applications Develop. Symp., pp. 83, 1979. 3. M. Stone, "Cross-validatory choice and assessment of statistical predictions," Journal of the Royal Statistical Society. Series B (Methodological), pp. 111-147, 1974. 4. ISBSG, ISBSG Release 2020 R1 5. Albrecht, A.J., Gaffney, J. E.: Software function, source lines of code, and development effort prediction: a software science validation. IEEE Transactions on Software Engineering, pp. 639–647 (1983). 6. Putnam, L. H: A general empirical solution to the macro software sizing and estimation problem. IEEE Transactions on Software Engineering, pp. 345–361 (1978) 7. Caper. J: Estimating software cost. Mc-Graw-Hill Edition (2007). 8. Boehm, B.W.: Software Engineering Economics.Prentice-Hall, Englewood Cliffs, NJ, USA, (1981). 9. C. Lokan and E. Mendes, "Investigating the use of the chronological split for software effort estimation," IET Softw., vol. 3, no. 5, pp. 422-434, 2009. 10. The Standish Group, https://www.standishgroup.com/ , access July 2021 11. T. Foss, E. Stensrud, B. Kitchenham, I. Myrtveit, "A simulation study of the model evaluation criterion MMRE," IEEE Trans. Softw. Eng., 29 (11) (2003), pp. 985-995 12. B. Kitchenham, S. MacDonell, L. Pickard, M. Shepperd, "What accuracy statistics really measure," IEE Proc. Softw. Eng., 148 (3) (2001), pp. 81-85 13. L. C. Briand, K. E. Emam, D. Surmann, I. Wieczorek and K. D. Maxwell, "An assessment and comparison of common software cost estimation modeling techniques," in International Conference on Software Engineering, 1999, pp. 313-322. 14. V.K. Bardsiri, D.N.A. Jawawi, S.Z.M. Hashim, E. Khatibi, "A flexible method to estimate the software development effort based on the classification of projects and localization of comparisons," Empir. Softw. Eng., 19 (2014), pp. 857-884 15. W. Mendenhall, A second course in statistics: regression analysis. Boston, MA, USA: Pearson Education, Inc., 2012. 16. Moløkken, K., Jørgensen, M.: A review of surveys on software effort estimation. International Symposium on Empirical Software Engineering, 223-231. Retrieved from ACM Digital Library database, (2003). 17. Moløkken - Østvold. K et al.: Project Estimation in the Norwegian Software Industry. A Summary. Simula Research Laboratory (2004). 18. Galorath, D. D., Evans, M. W.: Software sizing, estimation, and risk management: When performance is measured performance improves. Boca Raton, FL: Auerbach (2006) 19. Caper. J: Estimating software cost. Mc-Graw-Hill Edition (2007). 20. Chris F Kemerer : An empirical validation of software cost estimation models, Communications of the ACM, 30(5), 416-429 (1987). 21. Ravichandran, T.: Organizational assimilation of complex technologies: An empirical study of component-based software development. IEEE Trans. Eng. Manag., vol. 52, no. 2, pp. 249–268, (2005). 22. ISO/IEC 20926:2009 (IFPUG), Software and systems engineering -- software measurement -- IFPUG functional size measurement method 2009 23. Marcos, F., Marcelo, F., Sun, V.: Sun, Improvements to the Function Point Analysis Method: A Systematic Literature Review, IEEE Transactions on Engineering Management 62(4):1-12 (2015). 24. Kampstra, P, Verhoef. C: Reliability of function point counts — Department of Computer Science, VU University Amsterdam, Amsterdam, The Netherlands (2010). 25. Kemerer, C. F: Reliability of function points measurement: A field experiment. Commun. ACM, vol. 36, no. 2, pp. 85–97 (1993). 26. Meli, R: Functional metrics: Problems and possible solutions. Proc. 1st Eur. Software Meas. Conf., Antwerp, Belgium (1998). 27. Xia, W., Capretz, L. F., Ho, D.: Neuro-fuzzy approach to calibrate function points, Proc. 8th WSEAS Int. Conf. Fuzzy Syst., pp. 116-119, (2007) 28. Xia, W., Capretz, L. F., Ho, D., Ahmed, F.: A new calibration for function point complexity weights. Inf. Softw. Technol., vol. 50, no. 7–8, pp. 670-683, (2008). 29. Xia, W., Ho, D., Captrez, L. F.: A neuro-fuzzy model for function point calibration. WSEAS Trans. Inf. Sci. Appl., vol. 5, no. 1, pp. 22-30, (2008). 30. Hajri, M. A., Ghani, A. A. A., Sulaiman, M. N., Selamat, M. H.: Modification of standard function point complexity weights system. J. Syst. Softw., vol. 74, no. 2, pp. 195-206, (2005). 31. Ya-Fang, F., Xiao-Dong, L., Ren-Nong, Y., Yi-Lin, D., Yan-Jie, L.: A software size estimation method based on improved FPA. Proc. 2nd World Congr. Softw. Eng., pp. 228-233, (2010). 32. C. Gencel and O. Demirors, "Functional size measurement revisited," ACM Transaction on Software Engineering and methodology, vol.17, no. 3, pp.15.1-15.36, June 2008. 33. R. Meli and L. Santillo, "Function point estimation methods: a comparative overview," in FESMA '99 Conference Proceedings, Amsterdam, 4-8, October 1999. 34. Silhavy, Petr & Silhavy, Radek & Prokopová, Zdenka. (2019). Categorical Variable Segmentation Model for Software Development Effort Estimation. IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2891878. 35. Prokopova, Zdenka & Silhavy, Petr & Silhavy, Radek, "VAF factor influence on the accuracy of the effort estimation provided by modified function points methods," Annals of DAAAM & Proceedings. 2018, Vol. 29, p0076-0084. 9p 36. J. Wena, S. Lia, Z. Linb, Y. Huc, C. Huang, "Systematic literature review of machine learning-based software development effort estimation models," Information and Software Technology, vol. 54, no. 1, pp. 41-59, 2012.
utb.fulltext.sponsorship This work was supported by the Faculty of Applied Informatics, Tomas Bata University in Zlín, under project IGA/CebiaTech/2021/001.
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin, 76001, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2021/001
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam