Publikace UTB
Repozitář publikační činnosti UTB

Novelty search in particle swarm optimization

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Novelty search in particle swarm optimization en
dc.contributor.author Ulrich, Adam
dc.contributor.author Viktorin, Adam
dc.contributor.author Pluháček, Michal
dc.contributor.author Kadavý, Tomáš
dc.contributor.author Krňávek, Jan
dc.relation.ispartof 2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings
dc.identifier.isbn 978-1-72819-048-8
dc.date.issued 2021
dc.event.title 2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021
dc.event.location Orlando, FL
utb.event.state-en United States
utb.event.state-cs Spojené státy americké
dc.event.sdate 2021-12-05
dc.event.edate 2021-12-07
dc.type conferenceObject
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/SSCI50451.2021.9660131
dc.relation.uri https://ieeexplore.ieee.org/document/9660131
dc.subject Novelty Search en
dc.subject CEC 2020 en
dc.subject Particle Swarm Optimization en
dc.description.abstract This paper presents a novel approach to implementing the Novelty search technique (introduced by Kenneth O. Stanley) into the Particle Swarm optimization algorithm (PSO). PSO is well-known for its impaired ability to operate in multidimensional spaces due to its inclination towards premature convergence and possible stagnation. This presented research aims to try various implementations of Novelty Search that could remove this inability and enhance the PSO algorithm. In total, we present five different modifications. The CEC 2020 single objective bound-constrained optimization benchmark testbed was used to evaluate the different Novelty Search-based modifications of the algorithm. All results were compared and tested for statistical significance against the original variant of PSO using the Friedman rank test. This work aims to increase understanding of implementing new approaches for population dynamics control, which are not driven purely by a gradient, and inspire other researchers working with different evolutionary computation methods. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010887
utb.identifier.obdid 43883354
utb.identifier.scopus 2-s2.0-85125787855
utb.identifier.wok 000824464300308
utb.source d-scopus
dc.date.accessioned 2022-03-21T08:23:44Z
dc.date.available 2022-03-21T08:23:44Z
utb.contributor.internalauthor Ulrich, Adam
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Kadavý, Tomáš
utb.contributor.internalauthor Krňávek, Jan
utb.fulltext.affiliation Adam Ulrich Faculty of Applied Informatics Tomas Bata University in Zlin Zlin, Czech Republic a_ulrich@utb.cz Tomas Kadavy Faculty of Applied Informatics Tomas Bata University in Zlin Zlin, Czech Republic kadavy@utb.cz Adam Viktorin Faculty of Applied Informatics Tomas Bata University in Zlin Zlin, Czech Republic aviktorin@utb.cz Jan Krnavek Faculty of Applied Informatics Tomas Bata University in Zlin Zlin, Czech Republic krnavek@utb.cz Michal Pluhacek Faculty of Applied Informatics Tomas Bata University in Zlin Zlin, Czech Republic pluhacek@utb.cz
utb.fulltext.dates -
utb.fulltext.sponsorship -
utb.wos.affiliation [Ulrich, Adam; Viktorin, Adam; Pluhacek, Michal; Kadavy, Tomas; Krnavek, Jan] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Applied Informatics, Zlin, Czech Republic
utb.fulltext.projects -
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam