Publikace UTB
Repozitář publikační činnosti UTB

Student research abstract: Mining high average utility pattern using bio-inspired algorithm

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Student research abstract: Mining high average utility pattern using bio-inspired algorithm en
dc.contributor.author Pham, Ngoc Nam
dc.relation.ispartof Proceedings of the ACM Symposium on Applied Computing
dc.identifier.isbn 978-1-4503-8713-2
dc.date.issued 2022
dc.citation.spage 445
dc.citation.epage 448
dc.event.title 37th ACM/SIGAPP Symposium on Applied Computing, SAC 2022
dc.event.location online
dc.event.sdate 2022-04-25
dc.event.edate 2022-04-29
dc.type conferenceObject
dc.language.iso en
dc.publisher Association for Computing Machinery
dc.identifier.doi 10.1145/3477314.3506970
dc.relation.uri https://dl.acm.org/doi/10.1145/3477314.3506970
dc.subject high average-utility itemset mining en
dc.subject bio-inspired algorithm en
dc.subject particle swarm optimization en
dc.description.abstract High average utility pattern (itemset) Mining (HAUIM) is a necessary research problem in the field of knowledge discovery and data mining. Several algorithms have been proposed to mine high average-utility itemsets (HAUIs). Nonetheless, the large search space leads to poor performance because of excessive execution time and memory usage. To handle this limitation, particle swarm optimization (PSO) is applied to mine HAUIs. In this paper, an effective Binary PSO-based algorithm namely HAUIM-BPSO is proposed to explore HAUI efficiently. In general, HAUIM-BPSO first sets the number of discovered potential high average-utility 1-itemsets (1-PHAUIs) as the size of a particle based on average utility upper bound (AUUB) property. The sigmoid function is also used in the updating process of the individual of the proposed HAUIM-BPSO algorithm. Substantial experiments conducted on publicly available datasets show that the proposed algorithm has better results than existing state-of-the-art algorithms in terms of runtime which can significantly reduce the combinational problem, memory usage, and convergence speed. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010987
utb.identifier.obdid 43884092
utb.identifier.scopus 2-s2.0-85130399763
utb.identifier.wok 000946564100061
utb.source d-scopus
dc.date.accessioned 2022-06-10T07:47:14Z
dc.date.available 2022-06-10T07:47:14Z
utb.ou Department of Process Control
utb.contributor.internalauthor Pham, Ngoc Nam
utb.fulltext.affiliation Nam Ngoc Pham Faculty of Applied Informatics, Tomas Bata University in Zlín, Nám.T.G. Masaryka 5555, Zlín, Czech Republic. npham@utb.cz
utb.fulltext.dates -
utb.fulltext.references [1] Lan, G. C., Hong, T. P., Tseng, V. S.: Efficiently mining high averageutility itemsets with an improved upper-bound. International Journal of Information Technology and Decision Making, 11(5), pp. 1009-1030(2012). [2] Lu et al. A new method for mining high average utility itemsets. Lecture Notes in Computer Science, pp. 33-42 (2014). [3] Jerry Chun-Wei Lin, Ting Li, Philippe Fournier-Viger, Tzung-Pei Hong, Justin Zhan, and Miroslav Voznak. An Efficient Algorithm to Mine High Average-Utility Itemsets[J]. Advanced Engineering Informatics, 2016, 30(2):233-243. [4] Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4,pp.1942–1948. [5] Kennedy, J., Eberhart, R., 1997. A discrete binary version of particle swarm algorithm. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 4104-4108. [6] Sarath KNVD, Ravi V (2013) Association rule mining using binary particle swarm optimization. Eng Appl Artif Intell 26:1832–1840. [7] Wei Song, Chaomin Huang. Mining High Average-Utility Itemsets Based on Particle Swarm Optimization, UK, 2018. [8] T.-P. Hong, C.-H. Lee, and S.-L. Wang. Mining high average-utility itemsets. In Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, 2526-2530, 2009. [9] C.W. Lin, T.P. Hong, W.H. Lu, efficiently mining high average utility itemsets with a tree structure, Lect. Notes Comput. Sci. 5990 (2010) 131–139. [10] P. Fournier-Viger, C. W. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng, and H. T. Lam. The SPMF open-source data mining library version 2. In Proceedings of the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 36-40, 2016.
utb.fulltext.sponsorship The work was further supported by resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz).
utb.wos.affiliation [Nam Ngoc Pham] Tomas Bata Univ Zlin, Fac Appl Informat, Nam TG Masaryka 5555, Zlin, Czech Republic
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlín, Nám.T.G. Masaryka 5555, Zlín, Czech Republic
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam