Publikace UTB
Repozitář publikační činnosti UTB

Calculation of robustly relatively stabilizing PID controllers for linear time-invariant systems with unstructured uncertainty

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Calculation of robustly relatively stabilizing PID controllers for linear time-invariant systems with unstructured uncertainty en
dc.contributor.author Matušů, Radek
dc.contributor.author Senol, Bilal
dc.contributor.author Pekař, Libor
dc.relation.ispartof ISA Transactions
dc.identifier.issn 0019-0578 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1879-2022 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
dc.type article
dc.language.iso en
dc.publisher ISA - Instrumentation, Systems, and Automation Society
dc.identifier.doi 10.1016/j.isatra.2022.04.037
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0019057822001999
dc.subject robust control en
dc.subject robust relative stability en
dc.subject robust stability en
dc.subject robust performance en
dc.subject PID controllers en
dc.subject unstructured uncertainty en
dc.subject H-infinity norm en
dc.description.abstract This article deals with the calculation of all robustly relatively stabilizing (or robustly stabilizing as a special case) Proportional-Integral-Derivative (PID) controllers for Linear Time-Invariant (LTI) systems with unstructured uncertainty. The presented method is based on plotting the envelope that corresponds to the trios of P-I-D parameters marginally complying with given robust stability or robust relative stability condition formulated by means of the H infinity norm. Thus, this approach enables obtaining the region of robustly stabilizing or robustly relatively stabilizing controllers in a P-I-D space. The applicability of the technique is demonstrated in the illustrative examples, in which the regions of robustly stabilizing and robustly relatively stabilizing PID controllers are obtained for a controlled plant model with unstructured multiplicative uncertainty and unstructured additive uncertainty. Moreover, the method is also verified on the real laboratory model of a hot-air tunnel, for which two representative controllers from the robust relative stability region are selected and implemented. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010988
utb.identifier.obdid 43884073
utb.identifier.scopus 2-s2.0-85129925443
utb.identifier.wok 000904647900001
utb.identifier.coden ISATA
utb.source j-scopus
dc.date.accessioned 2022-06-10T07:48:32Z
dc.date.available 2022-06-10T07:48:32Z
dc.description.sponsorship Grantová Agentura České Republiky, GA ČR: 21-45465L
dc.description.sponsorship Czech Science Foundation (GACR); [21-45465L]
utb.ou CEBIA-Tech
utb.ou Department of Automation and Control Engineering
utb.contributor.internalauthor Matušů, Radek
utb.contributor.internalauthor Pekař, Libor
utb.fulltext.affiliation Radek Matušů a,*, Bilal Senol b, Libor Pekař c a Centre for Security, Information and Advanced Technologies (CEBIA–Tech), Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic b Department of Computer Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Turkey c Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic * Corresponding author. E-mail address: rmatusu@utb.cz (R. Matušů).
utb.fulltext.dates Received 20 September 2021 Received in revised form 21 April 2022 Accepted 22 April 2022 Available online xxxx
utb.fulltext.references [1] Researchgatenet. What is the percentage of the pid algorithm applications in industry? 2021, [online], Available from URL: <https://www.researchgate.net/post/What_is_the_percentage_of_the_PID_algorithm_applications_in_industry>. [Accessed 09 September 2021]. [2] O’Dwyer A. Handbook of PI and PID controller tuning rules. 3rd ed.. London, UK: Imperial College Press; 2009. [3] Desborough L, Miller R. Increasing customer value of industrial control performance monitoring-honeywell’s experience. In: Chemical process control-VI, assessment and new directions for research – Proceedings of the sixth international conference on chemical process control. AIChE symposium series, vol. 98, (no. 326):American Institute of Chemical Engineers; 2002, p. 169–89. [4] Samad T. A survey on industry impact and challenges thereof [Technical activities]. IEEE Control Syst Mag 2017;37(1):17–8. http://dx.doi.org/10.1109/MCS.2016.2621438. [5] Ge M, Chiu M-S, Wang Q-G. Robust PID controller design via LMI approach. J Process Control 2002;12(1):3–13. http://dx.doi.org/10.1016/S0959-1524(00)00057-3. [6] Vilanova R, Alfaro VM, Arrieta O. Robustness in PID control. In: Vilanova R, Visioli A, editors. PID control in the third millennium, advances in industrial control. London: Springer; 2012, http://dx.doi.org/10.1007/978-1-4471-2425-2_4. [7] Vilanova R, Arrieta O, Ponsa P. Robust PI/PID controllers for load disturbance based on direct synthesis. ISA Trans 2018;81:177–96. [8] Bhattacharyya SP. Robust control under parametric uncertainty: An overview and recent results. Annu Rev Control 2017;44:45–77. [9] Bhattacharyya SP, Datta A, Keel LH. Linear control theory: Structure, robustness, and optimization. Group, Boca Raton, Florida, USA: CRC Press, Taylor & Francis; 2009. [10] Barmish BR. New tools for robustness of linear systems. New York, USA: Macmillan; 1994. [11] Ackermann J, Bartlett A, Kaesbauer D, Sienel W, Steinhauser R. Robust control – Systems with uncertain physical parameters. London, UK: Springer-Verlag; 1993. [12] Doyle JC, Francis B, Tannenbaum A. Feedback control theory. New York, USA: Macmillan; 1992. [13] Skogestad S, Postlethwaite I. Multivariable feedback control: Analysis and design. Chichester, UK: John Wiley and Sons; 2005. [14] Kučera V. Robustní regulátory (robust controllers). rvtAuto 2001;7(6):43–5, (In Czech). [15] Matušů R, Şenol B, Yeroğlu C. Linear systems with unstructured multiplicative uncertainty: Modeling and robust stability analysis. PLoS One 2017;12(7). [16] Matušů R, Prokop R, Pekař L. Parametric and unstructured approach to uncertainty modelling and robust stability analysis. Int J Math Models Methods Appl Sci 2011;5(6):1011–8. [17] Doyle JC. Synthesis of robust controllers and filters. In: Proceedings of the 22nd IEEE conference on decision and control. San Antonio, Texas, USA; 1983, p. 109–14. [18] Zhou K, Doyle JC, Glover K. Robust and optimal control. Upper Saddle River, New Jersey, USA: Prentice Hall; 1996. [19] Yang J, Zhu Y, Yin W, Hu C, Yang K, Mu H. LFT structured uncertainty modeling and robust loop-shaping controller optimization for an ultraprecision positioning stage. IEEE Trans Ind Electron 2014;61(12):7013–25. [20] Pfifer H, Hecker S. Generation of optimal linear parametric models for LFT-based robust stability analysis and control design. IEEE Trans Control Syst Technol 2011;19(1):118–31. [21] Söylemez MT, Bayhan N. Calculation of all H∞ robust stabilizing gains for SISO LTI systems. IFAC Proc Vol 2008;41(2):3982–7. http://dx.doi.org/10.3182/20080706-5-KR-1001.00670. [22] Matušů R, Şenol B, Pekař L. Robust stability of fractional-order linear timeinvariant systems: Parametric versus unstructured uncertainty models. Complexity 2018;2018. http://dx.doi.org/10.1155/2018/8073481. [23] Sarjaš A, Svečko R, Chowdhury A. Strong stabilization servo controller with optimization of performance criteria. ISA Trans 2011;50(3):419–31. http://dx.doi.org/10.1016/j.isatra.2011.03.005. [24] Lao Y, Scruggs JT. Robust control of wave energy converters using unstructured uncertainty. In: Proceeding of the 2020 American control conference. Denver, CO, USA; 2020, p. 4237–44. http://dx.doi.org/10.23919/ACC45564.2020.9148045. [25] Ramos ETG, Acioli G, Barros PR, Neto JSR. H∞ Robust control using LMI and unstructured uncertainty applied to a temperature process. In: Proceedings of the 2020 7th international conference on control, decision and information technologies. Prague, Czech Republic; 2020, p. 1087–92. http://dx.doi.org/10.1109/CoDIT49905.2020.9263954. [26] Zhai G, Murao S, Koyama N, Yoshida M. Low order H∞ controller design: An LMI approach. In: Proceedings of the 2003 European control conference. 2003, p. 3070–5. http://dx.doi.org/10.23919/ECC.2003.7086510. [27] Ankelhed D. On design of low order H-infinity controllers [Doctoral dissertation], Linköping, Sweden: Linköping University; 2011. [28] Mitchell T, Overton ML. Fixed low-order controller design and H∞ optimization for large-scale dynamical systems. IFAC-PapersOnLine 2015;48(14):25–30. http://dx.doi.org/10.1016/j.ifacol.2015.09.428. [29] Ho M-T. Synthesis of H∞ PID controllers: A parametric approach. Automatica 2003;39(6):1069–75. [30] Tsakalis KS, Dash S. Approximate H∞ loop shaping in PID parameter adaptation. Internat J Adapt Control Signal Process 2013;27(1–2):136–52. http://dx.doi.org/10.1002/acs.2350. [31] Han S, Keel LH, Bhattacharyya SP. Pid controller design with an H∞ criterion. IFAC-PapersOnLine 2018;51(4):400–5. http://dx.doi.org/10.1016/j.ifacol.2018.06.127. [32] Matušů R. Calculation of robustly stabilizing PI controllers for linear timeinvariant systems with multiplicative uncertainty. In: Intelligent systems in cybernetics and automation control theory – Advances in intelligent systems and computing, Vol. 860. Cham: Springer Nature Switzerland AG; 2019, p. 259–63. http://dx.doi.org/10.1007/978-3-030-00184-1_24. [33] Matušů R, Prokop R. Robustly stabilizing regions of PI controllers parameters for systems with additive uncertainty. In: Proceedings of the 29th DAAAM international symposium. Vienna, Austria; 2018, p. 176–9. [34] Yaniv O. Design of low-order controllers satisfying sensitivity constraints for unstructured uncertain plants. Internat J Robust Nonlinear Control 2004;14(16):1359–70. [35] Dúbravská M, Harsányi L. Control of uncertain systems. J Electr Eng 2007;58(4):228–31. [36] Chokkadi S, Kumar SS. Design of robust controller for an uncertain system described by unstructured uncertainty model using small gain theorem. In: International conference on automation, computational and technology management. London, UK; 2019, p. 459–63. [37] Emami T, Watkins JM. Robust performance characterization of PID controllers in the frequency domain. WSEAS Trans Syst Control 2009;4(5):232–42. [38] Karšaiová M, Bakošová M, Vasičkaninová A. Robust control of a hydraulic system with unstructured uncertainties. In: Proceedings of the 18th international conference on process control. Slovakia: TatranskÁ Lomnica; 2011, p. 344–7. [39] Keshtkar N, Röbenack K. Unstructured uncertainty based modeling and robust stability analysis of textile-reinforced composites with embedded shape memory alloys. Algorithms 2020;13(1). http://dx.doi.org/10.3390/a13010024. [40] Matušů R, Şenol B, Pekař L. Robust PI control of interval plants with gain and phase margin specifications: Application to a continuous stirred tank reactor. IEEE Access 2020;8:145372–80. [41] Gryazina EN, Polyak BT, Tremba AA. Design of the low-order controllers by the H∞ criterion: A parametric approach. Autom Remote Control 2007;68:456–66. [42] Garpinger O, Hägglund T, Åström KJ. Performance and robustness trade-offs in PID control. J Process Control 2014;24(5):568–77. [43] Schlegel M, Medvecová P. Design of PI controllers: H∞ region approach. In: IFAC-papersonline, 51, (6) Proceedings of the 15th IFAC conference on programmable devices and embedded systems. 2018, p. 13–7. [44] Ho M-T, Huang S-T. Robust PID controller design for plants with structured and unstructured uncertainty. In: Proceedings of the 42nd IEEE international conference on decision and control. Maui, Hawaii, USA; 2003. [45] Ho M-T, Huang S-T. On the synthesis of robust PID controllers for plants with structured and unstructured uncertainty. Internat J Robust Nonlinear Control 2005;15(6):269–85. [46] Atsumi T, Messner WC. Modified bode plots for robust performance in SISO systems with structured and unstructured uncertainties. IEEE Trans Control Syst Technol 2012;20(2):356–68. [47] da Silva de Aguiar RS, Apkarian P, Noll D. Structured robust control against mixed uncertainty. IEEE Trans Control Syst Technol 2018;26(5):1771–81. http://dx.doi.org/10.1109/TCST.2017.2723864. [48] Shenton AT, Shafiei Z. Relative stability for control systems with adjustable parameters. J Guid Control Dyn 1994;17(2):304–10. [49] Cavicehi TJ. Phase-root locus and relative stability. IEEE Control Syst Mag 1996;16(4):69–77. [50] Barth EJ, Zhang J, Goldfarb M. Control design for relative stability in a PWM-controlled pneumatic system. J Dyn Syst Meas Control 2003;125(3):504–8. [51] Tan N, Kaya I, Yeroglu C, Atherton DP. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Convers Manage 2006;47(18–19):3045–58. [52] Stojić MR, Vukosavić SN. A generaliztion of Kharitonov’s four-polynomial concept for robust relative-stability problems. In: Facta universitatis, Series: Electronics and energetics, vol. 6, (no. 1):1993, p. 1–12. [53] Dasgupta S, Fu M, Schwarz C. Robust relative stability of time-invariant and time-varying lattice filters. IEEE Trans Signal Process 1998;46(8):2088–100. [54] Krutikova IR, Gaivoronsky SA. Application of the methods of root locus and D-decomposition for the analysis of the robust relative stability of the system. In: Proceedings of the 8th international scientific and practical conference of students, post-graduates and young scientists: Modern technique and technologies. Tomsk, Russia; 2002, p. 167–8. [55] Karimi A. Robust control [online], presentation slides, laboratoire d’automatique, école polytechnique fédérale de lausanne. 2021, (Swiss Federal Institute of Technology in Lausanne), Switzerland, Available from URL: <https://www.epfl.ch/labs/la/wp-content/uploads/2018/08/robust.pdf>, [Accessed 09 September 2021]. [56] Burns RS. Advanced control engineering. Oxford, UK: ButterworthHeinemann; 2001. [57] Matušů R, Şenol B. Description and analysis of systems with unstructured additive uncertainty. In: Cybernetics approaches in intelligent systems: computational methods in systems and software 2017, Vol. 1. Advances in intelligent systems and computing, vol. 661, Cham, Switzerland: Springer International Publishing AG; 2018, p. 1–9. http://dx.doi.org/10.1007/978-3-319-67618-0_1. [58] Smutný L, Škuta J, Farník J. Model teplovzdušného obvodu (model of hotair circuit). Technical report to HS 311107 ‘‘Technická pomoc při návrhu a zhotovení modelu teplovzdušného obvodu (Technical assistance in the design and manufacture of a model of hot-air circuit), VSB, Czech Republic: Technical University of Ostrava; 2002, (In Czech). [59] Matušů R. Robust control of systems with parametric uncertainty: An algebraic approach [Doctoral Thesis], Czech Republic: Faculty of Applied Informatics, Tomas Bata University in Zlín, Zlín; 2007. [60] Matušů R, Prokop R, Vojtěšek J. Control of airflow speed in laboratory model of hot-air system with perturbed parameters. In: Proceedings of 16th international conference on process control. ŠtrbskÉ Pleso, Slovakia; 2007. [61] Matušů R. Control of airflow speed in hot-air tunnel with uncertain parameters. In: Transactions of the VŠB – Technical University of Ostrava, Mechanical Series, LV (1), 2009, p. 181–8. [62] Matušů R, Prokop R. Single-parameter tuning of PI controllers: Theory and application. J Franklin Inst B 2011;348(8):2059–71. http://dx.doi.org/10.1016/j.jfranklin.2011.05.021. [63] Klán P, Honc D, Jindřich J. Nová měřicí jednotka CTRL V3 (new measuring unit CTRL V3). In: Proceedings of conference MATLAB 2003. Prague, Czech Republic; 2003, (In Czech). [64] Dušek F, Honc D. Využití sériové linky pod matlabem verze 6 (use of serial link under MATLAB 6). In: Proceedings of conference MATLAB 2002. Prague, Czech Republic; 2002, (In Czech).
utb.fulltext.sponsorship This work was supported by the Czech Science Foundation (GACR) under Grant No. 21-45465L.
utb.wos.affiliation [Matusu, Radek] Tomas Bata Univ Zlin, Fac Appl Informat, Ctr Secur Informat & Adv Technol CEBIA Tech, nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Senol, Bilal] Inonu Univ, Fac Engn, Dept Comp Engn, TR-44280 Malatya, Turkey; [Pekar, Libor] Tomas Bata Univ Zlin, Fac Appl Informat, Dept Automat & Control Engn, nam TG Masaryka 5555, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre for Security, Information and Advanced Technologies (CEBIA–Tech), Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, 760 01, Czech Republic; Department of Computer Engineering, Faculty of Engineering, Inonu University, Malatya, 44280, Turkey; Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, 760 01, Czech Republic
utb.fulltext.projects 21-45465L
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou CEBIA-Tech
utb.fulltext.ou Department of Automation and Control Engineering
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam