Kontaktujte nás | Jazyk: čeština English
dc.title | Calculation of robustly relatively stabilizing PID controllers for linear time-invariant systems with unstructured uncertainty | en |
dc.contributor.author | Matušů, Radek | |
dc.contributor.author | Senol, Bilal | |
dc.contributor.author | Pekař, Libor | |
dc.relation.ispartof | ISA Transactions | |
dc.identifier.issn | 0019-0578 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1879-2022 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | ISA - Instrumentation, Systems, and Automation Society | |
dc.identifier.doi | 10.1016/j.isatra.2022.04.037 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0019057822001999 | |
dc.subject | robust control | en |
dc.subject | robust relative stability | en |
dc.subject | robust stability | en |
dc.subject | robust performance | en |
dc.subject | PID controllers | en |
dc.subject | unstructured uncertainty | en |
dc.subject | H-infinity norm | en |
dc.description.abstract | This article deals with the calculation of all robustly relatively stabilizing (or robustly stabilizing as a special case) Proportional-Integral-Derivative (PID) controllers for Linear Time-Invariant (LTI) systems with unstructured uncertainty. The presented method is based on plotting the envelope that corresponds to the trios of P-I-D parameters marginally complying with given robust stability or robust relative stability condition formulated by means of the H infinity norm. Thus, this approach enables obtaining the region of robustly stabilizing or robustly relatively stabilizing controllers in a P-I-D space. The applicability of the technique is demonstrated in the illustrative examples, in which the regions of robustly stabilizing and robustly relatively stabilizing PID controllers are obtained for a controlled plant model with unstructured multiplicative uncertainty and unstructured additive uncertainty. Moreover, the method is also verified on the real laboratory model of a hot-air tunnel, for which two representative controllers from the robust relative stability region are selected and implemented. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1010988 | |
utb.identifier.obdid | 43884073 | |
utb.identifier.scopus | 2-s2.0-85129925443 | |
utb.identifier.wok | 000904647900001 | |
utb.identifier.coden | ISATA | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-06-10T07:48:32Z | |
dc.date.available | 2022-06-10T07:48:32Z | |
dc.description.sponsorship | Grantová Agentura České Republiky, GA ČR: 21-45465L | |
dc.description.sponsorship | Czech Science Foundation (GACR); [21-45465L] | |
utb.ou | CEBIA-Tech | |
utb.ou | Department of Automation and Control Engineering | |
utb.contributor.internalauthor | Matušů, Radek | |
utb.contributor.internalauthor | Pekař, Libor | |
utb.fulltext.affiliation | Radek Matušů a,*, Bilal Senol b, Libor Pekař c a Centre for Security, Information and Advanced Technologies (CEBIA–Tech), Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic b Department of Computer Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Turkey c Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic * Corresponding author. E-mail address: rmatusu@utb.cz (R. Matušů). | |
utb.fulltext.dates | Received 20 September 2021 Received in revised form 21 April 2022 Accepted 22 April 2022 Available online xxxx | |
utb.fulltext.references | [1] Researchgatenet. What is the percentage of the pid algorithm applications in industry? 2021, [online], Available from URL: <https://www.researchgate.net/post/What_is_the_percentage_of_the_PID_algorithm_applications_in_industry>. [Accessed 09 September 2021]. [2] O’Dwyer A. Handbook of PI and PID controller tuning rules. 3rd ed.. London, UK: Imperial College Press; 2009. [3] Desborough L, Miller R. Increasing customer value of industrial control performance monitoring-honeywell’s experience. In: Chemical process control-VI, assessment and new directions for research – Proceedings of the sixth international conference on chemical process control. AIChE symposium series, vol. 98, (no. 326):American Institute of Chemical Engineers; 2002, p. 169–89. [4] Samad T. A survey on industry impact and challenges thereof [Technical activities]. IEEE Control Syst Mag 2017;37(1):17–8. http://dx.doi.org/10.1109/MCS.2016.2621438. [5] Ge M, Chiu M-S, Wang Q-G. Robust PID controller design via LMI approach. J Process Control 2002;12(1):3–13. http://dx.doi.org/10.1016/S0959-1524(00)00057-3. [6] Vilanova R, Alfaro VM, Arrieta O. Robustness in PID control. In: Vilanova R, Visioli A, editors. PID control in the third millennium, advances in industrial control. London: Springer; 2012, http://dx.doi.org/10.1007/978-1-4471-2425-2_4. [7] Vilanova R, Arrieta O, Ponsa P. Robust PI/PID controllers for load disturbance based on direct synthesis. ISA Trans 2018;81:177–96. [8] Bhattacharyya SP. Robust control under parametric uncertainty: An overview and recent results. Annu Rev Control 2017;44:45–77. [9] Bhattacharyya SP, Datta A, Keel LH. Linear control theory: Structure, robustness, and optimization. Group, Boca Raton, Florida, USA: CRC Press, Taylor & Francis; 2009. [10] Barmish BR. New tools for robustness of linear systems. New York, USA: Macmillan; 1994. [11] Ackermann J, Bartlett A, Kaesbauer D, Sienel W, Steinhauser R. Robust control – Systems with uncertain physical parameters. London, UK: Springer-Verlag; 1993. [12] Doyle JC, Francis B, Tannenbaum A. Feedback control theory. New York, USA: Macmillan; 1992. [13] Skogestad S, Postlethwaite I. Multivariable feedback control: Analysis and design. Chichester, UK: John Wiley and Sons; 2005. [14] Kučera V. Robustní regulátory (robust controllers). rvtAuto 2001;7(6):43–5, (In Czech). [15] Matušů R, Şenol B, Yeroğlu C. Linear systems with unstructured multiplicative uncertainty: Modeling and robust stability analysis. PLoS One 2017;12(7). [16] Matušů R, Prokop R, Pekař L. Parametric and unstructured approach to uncertainty modelling and robust stability analysis. Int J Math Models Methods Appl Sci 2011;5(6):1011–8. [17] Doyle JC. Synthesis of robust controllers and filters. In: Proceedings of the 22nd IEEE conference on decision and control. San Antonio, Texas, USA; 1983, p. 109–14. [18] Zhou K, Doyle JC, Glover K. Robust and optimal control. Upper Saddle River, New Jersey, USA: Prentice Hall; 1996. [19] Yang J, Zhu Y, Yin W, Hu C, Yang K, Mu H. LFT structured uncertainty modeling and robust loop-shaping controller optimization for an ultraprecision positioning stage. IEEE Trans Ind Electron 2014;61(12):7013–25. [20] Pfifer H, Hecker S. Generation of optimal linear parametric models for LFT-based robust stability analysis and control design. IEEE Trans Control Syst Technol 2011;19(1):118–31. [21] Söylemez MT, Bayhan N. Calculation of all H∞ robust stabilizing gains for SISO LTI systems. IFAC Proc Vol 2008;41(2):3982–7. http://dx.doi.org/10.3182/20080706-5-KR-1001.00670. [22] Matušů R, Şenol B, Pekař L. Robust stability of fractional-order linear timeinvariant systems: Parametric versus unstructured uncertainty models. Complexity 2018;2018. http://dx.doi.org/10.1155/2018/8073481. [23] Sarjaš A, Svečko R, Chowdhury A. Strong stabilization servo controller with optimization of performance criteria. ISA Trans 2011;50(3):419–31. http://dx.doi.org/10.1016/j.isatra.2011.03.005. [24] Lao Y, Scruggs JT. Robust control of wave energy converters using unstructured uncertainty. In: Proceeding of the 2020 American control conference. Denver, CO, USA; 2020, p. 4237–44. http://dx.doi.org/10.23919/ACC45564.2020.9148045. [25] Ramos ETG, Acioli G, Barros PR, Neto JSR. H∞ Robust control using LMI and unstructured uncertainty applied to a temperature process. In: Proceedings of the 2020 7th international conference on control, decision and information technologies. Prague, Czech Republic; 2020, p. 1087–92. http://dx.doi.org/10.1109/CoDIT49905.2020.9263954. [26] Zhai G, Murao S, Koyama N, Yoshida M. Low order H∞ controller design: An LMI approach. In: Proceedings of the 2003 European control conference. 2003, p. 3070–5. http://dx.doi.org/10.23919/ECC.2003.7086510. [27] Ankelhed D. On design of low order H-infinity controllers [Doctoral dissertation], Linköping, Sweden: Linköping University; 2011. [28] Mitchell T, Overton ML. Fixed low-order controller design and H∞ optimization for large-scale dynamical systems. IFAC-PapersOnLine 2015;48(14):25–30. http://dx.doi.org/10.1016/j.ifacol.2015.09.428. [29] Ho M-T. Synthesis of H∞ PID controllers: A parametric approach. Automatica 2003;39(6):1069–75. [30] Tsakalis KS, Dash S. Approximate H∞ loop shaping in PID parameter adaptation. Internat J Adapt Control Signal Process 2013;27(1–2):136–52. http://dx.doi.org/10.1002/acs.2350. [31] Han S, Keel LH, Bhattacharyya SP. Pid controller design with an H∞ criterion. IFAC-PapersOnLine 2018;51(4):400–5. http://dx.doi.org/10.1016/j.ifacol.2018.06.127. [32] Matušů R. Calculation of robustly stabilizing PI controllers for linear timeinvariant systems with multiplicative uncertainty. In: Intelligent systems in cybernetics and automation control theory – Advances in intelligent systems and computing, Vol. 860. Cham: Springer Nature Switzerland AG; 2019, p. 259–63. http://dx.doi.org/10.1007/978-3-030-00184-1_24. [33] Matušů R, Prokop R. Robustly stabilizing regions of PI controllers parameters for systems with additive uncertainty. In: Proceedings of the 29th DAAAM international symposium. Vienna, Austria; 2018, p. 176–9. [34] Yaniv O. Design of low-order controllers satisfying sensitivity constraints for unstructured uncertain plants. Internat J Robust Nonlinear Control 2004;14(16):1359–70. [35] Dúbravská M, Harsányi L. Control of uncertain systems. J Electr Eng 2007;58(4):228–31. [36] Chokkadi S, Kumar SS. Design of robust controller for an uncertain system described by unstructured uncertainty model using small gain theorem. In: International conference on automation, computational and technology management. London, UK; 2019, p. 459–63. [37] Emami T, Watkins JM. Robust performance characterization of PID controllers in the frequency domain. WSEAS Trans Syst Control 2009;4(5):232–42. [38] Karšaiová M, Bakošová M, Vasičkaninová A. Robust control of a hydraulic system with unstructured uncertainties. In: Proceedings of the 18th international conference on process control. Slovakia: TatranskÁ Lomnica; 2011, p. 344–7. [39] Keshtkar N, Röbenack K. Unstructured uncertainty based modeling and robust stability analysis of textile-reinforced composites with embedded shape memory alloys. Algorithms 2020;13(1). http://dx.doi.org/10.3390/a13010024. [40] Matušů R, Şenol B, Pekař L. Robust PI control of interval plants with gain and phase margin specifications: Application to a continuous stirred tank reactor. IEEE Access 2020;8:145372–80. [41] Gryazina EN, Polyak BT, Tremba AA. Design of the low-order controllers by the H∞ criterion: A parametric approach. Autom Remote Control 2007;68:456–66. [42] Garpinger O, Hägglund T, Åström KJ. Performance and robustness trade-offs in PID control. J Process Control 2014;24(5):568–77. [43] Schlegel M, Medvecová P. Design of PI controllers: H∞ region approach. In: IFAC-papersonline, 51, (6) Proceedings of the 15th IFAC conference on programmable devices and embedded systems. 2018, p. 13–7. [44] Ho M-T, Huang S-T. Robust PID controller design for plants with structured and unstructured uncertainty. In: Proceedings of the 42nd IEEE international conference on decision and control. Maui, Hawaii, USA; 2003. [45] Ho M-T, Huang S-T. On the synthesis of robust PID controllers for plants with structured and unstructured uncertainty. Internat J Robust Nonlinear Control 2005;15(6):269–85. [46] Atsumi T, Messner WC. Modified bode plots for robust performance in SISO systems with structured and unstructured uncertainties. IEEE Trans Control Syst Technol 2012;20(2):356–68. [47] da Silva de Aguiar RS, Apkarian P, Noll D. Structured robust control against mixed uncertainty. IEEE Trans Control Syst Technol 2018;26(5):1771–81. http://dx.doi.org/10.1109/TCST.2017.2723864. [48] Shenton AT, Shafiei Z. Relative stability for control systems with adjustable parameters. J Guid Control Dyn 1994;17(2):304–10. [49] Cavicehi TJ. Phase-root locus and relative stability. IEEE Control Syst Mag 1996;16(4):69–77. [50] Barth EJ, Zhang J, Goldfarb M. Control design for relative stability in a PWM-controlled pneumatic system. J Dyn Syst Meas Control 2003;125(3):504–8. [51] Tan N, Kaya I, Yeroglu C, Atherton DP. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Convers Manage 2006;47(18–19):3045–58. [52] Stojić MR, Vukosavić SN. A generaliztion of Kharitonov’s four-polynomial concept for robust relative-stability problems. In: Facta universitatis, Series: Electronics and energetics, vol. 6, (no. 1):1993, p. 1–12. [53] Dasgupta S, Fu M, Schwarz C. Robust relative stability of time-invariant and time-varying lattice filters. IEEE Trans Signal Process 1998;46(8):2088–100. [54] Krutikova IR, Gaivoronsky SA. Application of the methods of root locus and D-decomposition for the analysis of the robust relative stability of the system. In: Proceedings of the 8th international scientific and practical conference of students, post-graduates and young scientists: Modern technique and technologies. Tomsk, Russia; 2002, p. 167–8. [55] Karimi A. Robust control [online], presentation slides, laboratoire d’automatique, école polytechnique fédérale de lausanne. 2021, (Swiss Federal Institute of Technology in Lausanne), Switzerland, Available from URL: <https://www.epfl.ch/labs/la/wp-content/uploads/2018/08/robust.pdf>, [Accessed 09 September 2021]. [56] Burns RS. Advanced control engineering. Oxford, UK: ButterworthHeinemann; 2001. [57] Matušů R, Şenol B. Description and analysis of systems with unstructured additive uncertainty. In: Cybernetics approaches in intelligent systems: computational methods in systems and software 2017, Vol. 1. Advances in intelligent systems and computing, vol. 661, Cham, Switzerland: Springer International Publishing AG; 2018, p. 1–9. http://dx.doi.org/10.1007/978-3-319-67618-0_1. [58] Smutný L, Škuta J, Farník J. Model teplovzdušného obvodu (model of hotair circuit). Technical report to HS 311107 ‘‘Technická pomoc při návrhu a zhotovení modelu teplovzdušného obvodu (Technical assistance in the design and manufacture of a model of hot-air circuit), VSB, Czech Republic: Technical University of Ostrava; 2002, (In Czech). [59] Matušů R. Robust control of systems with parametric uncertainty: An algebraic approach [Doctoral Thesis], Czech Republic: Faculty of Applied Informatics, Tomas Bata University in Zlín, Zlín; 2007. [60] Matušů R, Prokop R, Vojtěšek J. Control of airflow speed in laboratory model of hot-air system with perturbed parameters. In: Proceedings of 16th international conference on process control. ŠtrbskÉ Pleso, Slovakia; 2007. [61] Matušů R. Control of airflow speed in hot-air tunnel with uncertain parameters. In: Transactions of the VŠB – Technical University of Ostrava, Mechanical Series, LV (1), 2009, p. 181–8. [62] Matušů R, Prokop R. Single-parameter tuning of PI controllers: Theory and application. J Franklin Inst B 2011;348(8):2059–71. http://dx.doi.org/10.1016/j.jfranklin.2011.05.021. [63] Klán P, Honc D, Jindřich J. Nová měřicí jednotka CTRL V3 (new measuring unit CTRL V3). In: Proceedings of conference MATLAB 2003. Prague, Czech Republic; 2003, (In Czech). [64] Dušek F, Honc D. Využití sériové linky pod matlabem verze 6 (use of serial link under MATLAB 6). In: Proceedings of conference MATLAB 2002. Prague, Czech Republic; 2002, (In Czech). | |
utb.fulltext.sponsorship | This work was supported by the Czech Science Foundation (GACR) under Grant No. 21-45465L. | |
utb.wos.affiliation | [Matusu, Radek] Tomas Bata Univ Zlin, Fac Appl Informat, Ctr Secur Informat & Adv Technol CEBIA Tech, nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Senol, Bilal] Inonu Univ, Fac Engn, Dept Comp Engn, TR-44280 Malatya, Turkey; [Pekar, Libor] Tomas Bata Univ Zlin, Fac Appl Informat, Dept Automat & Control Engn, nam TG Masaryka 5555, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Centre for Security, Information and Advanced Technologies (CEBIA–Tech), Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, 760 01, Czech Republic; Department of Computer Engineering, Faculty of Engineering, Inonu University, Malatya, 44280, Turkey; Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, 760 01, Czech Republic | |
utb.fulltext.projects | 21-45465L | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | CEBIA-Tech | |
utb.fulltext.ou | Department of Automation and Control Engineering |