Kontaktujte nás | Jazyk: čeština English
dc.title | Eco-friendly whey/polysaccharide-based hydrogel with poly(lactic acid) for improvement of agricultural soil quality and plant growth | en |
dc.contributor.author | Duřpeková, Silvie | |
dc.contributor.author | Domincová Bergerová, Eva | |
dc.contributor.author | Hanušová, Dominika | |
dc.contributor.author | Dušánková, Miroslava | |
dc.contributor.author | Sedlařík, Vladimír | |
dc.relation.ispartof | International Journal of Biological Macromolecules | |
dc.identifier.issn | 0141-8130 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1879-0003 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 212 | |
dc.citation.spage | 85 | |
dc.citation.epage | 96 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier B.V. | |
dc.identifier.doi | 10.1016/j.ijbiomac.2022.05.053 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0141813022010145 | |
dc.subject | acid whey | en |
dc.subject | hydrogel | en |
dc.subject | poly(lactic acid) | en |
dc.subject | sustainability | en |
dc.subject | water retention | en |
dc.description.abstract | A set of renewable and biodegradable hydrogels based on acid whey and cellulose derivatives blended with poly (lactic acid) (PLA) were designed as eco-friendly biopolymeric material for sustainable agricultural applications. The physico-chemical properties of the hydrogel were evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and rheological measurements. The effect of the whey/poly-saccharide/PLA hydrogel on soil quality improvement (water retention study, biodegradability, loading capacity and release of the fertilizers) and the growth pattern of Raphanus sativus and Phaseolus vulgaris has been also studied. The addition of PLA has been found to improve mechanical properties of the hydrogel. The introduction of 20% wt PLA extended decomposition time of hydrogels by 25% which makes the material more stable in the environment and maintaining the soil humidity for longer. The increasing the amount of PLA led to a rise in hydrogel viscosity brought about better entrapment efficiency of the fertilizers (86-92% for KNO3 and 87-96% for urea, resp.) compared to control (82% for KNO3 and 85% for urea, resp.). The novel hydrogels with swelling ratio of up to 500% showed potential as a sustainable water reservoir for plants improving water retention capacity of the soil by 30%. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1010994 | |
utb.identifier.obdid | 43884268 | |
utb.identifier.scopus | 2-s2.0-85130494484 | |
utb.identifier.wok | 000805955200002 | |
utb.identifier.pubmed | 35561864 | |
utb.identifier.coden | IJBMD | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-06-10T07:48:32Z | |
dc.date.available | 2022-06-10T07:48:32Z | |
dc.description.sponsorship | Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2020/002; Ministerstvo Zemědělství: QK1910392 | |
dc.description.sponsorship | Ministry of Agriculture of the Czech Republic [QK1910392]; Ministry of Education, Youth and Sports of the Czech Republic [RP/CPS/2020/002] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Duřpeková, Silvie | |
utb.contributor.internalauthor | Domincová Bergerová, Eva | |
utb.contributor.internalauthor | Hanušová, Dominika | |
utb.contributor.internalauthor | Dušánková, Miroslava | |
utb.contributor.internalauthor | Sedlařík, Vladimír | |
utb.fulltext.affiliation | Silvie Durpekova *, Eva Domincova Bergerova, Dominika Hanusova, Miroslava Dusankova, Vladimir Sedlarik Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic * Corresponding author. E-mail address: durpekova@utb.cz (S. Durpekova). | |
utb.fulltext.dates | Received 28 February 2022 Received in revised form 6 May 2022 Accepted 6 May 2022 Available online 11 May 2022 | |
utb.fulltext.references | [1] W. Abobatta, Impact of hydrogel polymer in agricultural sector, Adv. Agric. Environ. Sci. Open Access 1 (2018) 59–64. https://doi.org/10.30881/aaeoa.00011. [2] M. Klein, E. Poverenov, Natural biopolymer-based hydrogels for use in food and agriculture, J. Sci. Food Agric. 100 (2020) 2337–2347, https://doi.org/10.1002/jsfa.10274. [3] B. Wilske, M. Bai, B. Lindenstruth, M. Bach, Z. Rezaie, H.-G. Frede, L. Breuer, Biodegradability of a polyacrylate superabsorbent in agricultural soil, Environ. Sci. Pollut. Res. 21 (2014) 9453–9460, https://doi.org/10.1007/s11356-013-2103-1. [4] E. Khan, K. Ozaltin, A. Bernal-Ballen, A. Di Martino, Renewable mixed hydrogels based on polysaccharide and protein for release of agrochemicals and soil conditioning, Sustainability 13 (2021), https://doi.org/10.3390/su131810439. [5] B. Song, H. Liang, R. Sun, P. Peng, Y. Jiang, D. She, Hydrogel synthesis based on lignin/sodium alginate and application in agriculture, Int. J. Biol. Macromol. 144 (2020) 219–230, https://doi.org/10.1016/j.ijbiomac.2019.12.082. [6] V. Saruchi, H. Kumar, S.M. Mittal, Alhassan, biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment friendly controlled release of agrochemicals, Int. J. Biol. Macromol. 132 (2019) 1252–1261, https://doi.org/10.1016/j.ijbiomac.2019.04.023. [7] A. Ali, S. Ahmed, Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers, J. Agric. Food Chem. 66 (2018) 6940–6967, https://doi.org/10.1021/acs.jafc.8b01052. [8] Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao, G. Yu, Hydrogels and hydrogel-derived materials for energy and water sustainability, Chem. Rev. 120 (2020) 7642–7707, https://doi.org/10.1021/acs.chemrev.0c00345. [9] A. Sannino, C. Demitri, M. Madaghiele, Biodegradable cellulose-based hydrogels: design and applications, Materials (Basel) 2 (2009) 353–373, https://doi.org/10.3390/ma2020353. [10] C. Demitri, F. Scalera, M. Madaghiele, A. Sannino, A. Maffezzoli, Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture, Int. J. Polym. Sci. 2013 (2013), https://doi.org/10.1155/2013/435073. [11] W. Tanan, J. Panichpakdee, P. Suwanakood, S. Saengsuwan, Biodegradable hydrogels of cassava starch-g-polyacrylic acid/natural rubber/polyvinyl alcohol as environmentally friendly and highly efficient coating material for slow-release urea fertilizers, J. Ind. Eng. Chem. 101 (2021) 237–252. https://doi.org/10.1016/j.jiec.2021.06.008. [12] A.M. Abdallah, The effect of hydrogel particle size on water retention properties and availability under water stress, Int. Soil Water Conserv. Res. 7 (2019) 275–285, https://doi.org/10.1016/j.iswcr.2019.05.001. [13] A. Akay, D. Sert, The effects of whey application on the soil biological properties and plant growth, EurasianJ. Soil Sci. 9 (2020) 349–355. https://doi.org/10.18393/ejss.785380. [14] C.W. Robbins, G. Lehrsch, Cheese whey as a soil conditioner, in: Handb. Soil Cond. Subst. That Enhanc. Phys. Prop. Soil, 1998, pp. 167–186. [15] B.S. Sukriti, R. Kaith, M. Jindal, M. Kumari, Kaur, biodegradable-stimuli sensitive xanthan gum based hydrogel: evaluation of antibacterial activity and controlled agro-chemical release, React. Funct. Polym. 120 (2017) 1–13, https://doi.org/10.1016/j.reactfunctpolym.2017.08.012. [16] D. Das, P. Prakash, P.K. Rout, S. Bhaladhare, Synthesis and characterization of superabsorbent cellulose-based hydrogel for agriculture application, Starch - Stärke. 73 (2021), 1900284. https://doi.org/10.1002/star.201900284. [17] S. Durpekova, A. Di Martino, M. Dusankova, P. Drohsler, V. Sedlarik, Biopolymer hydrogel based on acid whey and cellulose derivatives for enhancement water retention capacity of soil and slow release of fertilizers, Polymers 13 (2021), https://doi.org/10.3390/polym13193274. [18] A. Basu, K.R. Kunduru, S. Doppalapudi, A.J. Domb, W. Khan, Poly(lactic acid) based hydrogels, Adv. Drug Deliv. Rev. 107 (2016) 192–205, https://doi.org/10.1016/j.addr.2016.07.004. [19] J. Rydz, W. Sikorska, M. Kyulavska, D. Christova, Polyester-based (Bio)degradable polymers as environmentally friendly materials for sustainable development, Int. J. Mol. Sci. 16 (2014) 564–596, https://doi.org/10.3390/ijms16010564. [20] K.K. Mali, S.C. Dhawale, R.J. Dias, N.S. Dhane, V.S. Ghorpade, Citric acid crosslinked carboxymethyl cellulose-based composite hydrogel films for drug delivery, Indian J. Pharm. Sci. 80 (2018) 657–667, https://doi.org/10.4172/pharmaceutical-sciences.1000405. [21] P. Kucharczyk, I. Poljansek, V. Sedlarik, V. Kasparkova, A. Salakova, J. Drbohlav, U. Cvelbar, P. Saha, Functionalization of polylactic acid through direct melt polycondensation in the presence of tricarboxylic acid, J. Appl. Polym. Sci. 122 (2011) 1275–1285. https://doi.org/10.1002/app.34260. [22] V. Sedlarik, P. Kucharczyk, V. Kasparkova, J. Drbohlav, A. Salakova, P. Saha, Optimization of the reaction conditions and characterization of L-lactic acid direct polycondensation products catalyzed by a non-metal-based compound, J. Appl. Polym. Sci. 116 (2010) 1597–1602. https://doi.org/10.1002/app.31445. [23] Y. Zu, Y. Zhang, X. Zhao, C. Shan, S. Zu, K. Wang, Y. Li, Y. Ge, Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin, Int. J. Biol. Macromol. 50 (2012) 82–87, https://doi.org/10.1016/j.ijbiomac.2011.10.006. [24] S.M.H. Bukhari, S. Khan, M. Rehanullah, N.M. Ranjha, Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release, Int. J. Polym. Sci. 2015 (2015), https://doi.org/10.1155/2015/187961. [25] T. Fekete, J. Borsa, E. Takács, L. Wojnárovits, Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent, Radiat. Phys. Chem. 118 (2016) 114–119. https://doi.org/10.1016/j.radphyschem.2015.02.023. [26] M.G. Raucci, M.A. Alvarez-Perez, C. Demitri, D. Giugliano, V. De Benedictis, A. Sannino, L. Ambrosio, Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation, J. Biomed. Mater. Res. Part A. 103 (2015) 2045–2056. https://doi.org/10.1002/jbm.a.35343. [27] N.E. Rabat, S. Hashim, R.A. Majid, Effect of different monomers on water retention properties of slow release fertilizer hydrogel, Procedia Eng. 148 (2016) 201–207, https://doi.org/10.1016/j.proeng.2016.06.573. [28] D.J. Sarkar, A. Singh, pH-triggered release of boron and thiamethoxam from boric acid crosslinked carboxymethyl cellulose hydrogel based formulations, Polym. - Plast. Technol. Eng. 58 (2018) 83–96, https://doi.org/10.1080/03602559.2018.1466165. [29] S. Ganguly, N.C. Das, Water uptake kinetics and control release of agrochemical fertilizers from nanoclay-assisted semi-interpenetrating sodium acrylate-based hydrogel, Polym. Plast. Technol. Eng. 56 (2017) 744–761, https://doi.org/10.1080/03602559.2016.1233268. [30] S. Ganguly, N.C. Das, Synthesis of mussel inspired polydopamine coated halloysite nanotubes based semi-IPN: an approach to fine tuning in drug release and mechanical toughening, Macromol. Symp. 382 (2018) 1–8, https://doi.org/10.1002/masy.201800076. [31] D. Cheng, Y. Liu, G. Yang, A. Zhang, Water- and fertilizer-integrated hydrogel derived from the polymerization of acrylic acid and urea as a slow-release N fertilizer and water retention in agriculture, J. Agric. Food Chem. 66 (2018) 5762–5769, https://doi.org/10.1021/acs.jafc.8b00872. [32] M.H. Chen, L.L. Wang, J.J. Chung, Y.H. Kim, P. Atluri, J.A. Burdick, Methods to assess shear-thinning hydrogels for application as injectable biomaterials, ACS Biomater. Sci. Eng. 3 (2017) 3146–3160, https://doi.org/10.1021/acsbiomaterials.7b00734. [33] S. Gorgieva, V. Kokol, Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear, Carbohydr. Polym. 85 (2011) 664–673, https://doi.org/10.1016/j.carbpol.2011.03.037. [34] M.J. Tavera-Quiroz, J. Feria Díaz, A. Pinotti, Characterization of methylcellulose based hydrogels by using citric acid as a crosslinking agent, Int. J. Appl. Eng. Res. 13 (2018) 13302–13307. http://www.ripublication.com. [35] Y. Seki, A. Altinisik, B. Demircioğlu, C. Tetik, Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization, Cellulose 21 (2014) 1689-1698, https://doi.org/10.1007/s10570-014-0204-8. [36] K. Kabiri, H. Omidian, S.A. Hashemi, M.J. Zohuriaan-Mehr, Synthesis of fastswelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate, Eur. Polym. J. 39 (2003) 1341–1348. https://doi.org/10.1016/S0014-3057(02)00391-9. [37] V.M. Gun’ko, I.N. Savina, S.V. Mikhalovsky, Properties of water bound in hydrogels, Gels 3 (2017), https://doi.org/10.3390/gels3040037. [38] C. Demitri, M. Madaghiele, M.Grazia Raucci, A. Sannino, L. Ambrosio, Investigating the structure-related properties of cellulose-based superabsorbent hydrogels, in: Hydrogels - Smart Mater. Biomed. Appl, IntechOpen, 2019, https://doi.org/10.5772/intechopen.80986. [39] C. Demitri, F. Scalera, M. Madaghiele, A. Sannino, A. Maffezzoli, Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture, Int. J. Polym. Sci. 2013 (2013), 435073, https://doi.org/10.1155/2013/435073. [40] R. Barbucci, A. Magnani, M. Consumi, Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density, Macromolecules 33 (2000) 7475–7480, https://doi.org/10.1021/ma0007029. [41] S. Sultana, S. Rahaman, S.M. Hasnine, in: Effect of Salinity on Swelling Behaviors of Superwater Absorbent Hydrogel Prepared from Carboxymethyl cellulose / Acrylamide Blends by Gamma Radiation 2, 2018, pp. 20–26. https://doi.org/10.11648/j.ajaic.20180202.13. [42] J. Misiewicz, A. Głogowski, K. Lejcuś, D. Marczak, The characteristics of swelling pressure for superabsorbent polymer and soil mixtures, Materials (Basel) 13 (2020) 1–13, https://doi.org/10.3390/ma13225071. [43] B.M. Chen, Z.H. Wang, S.X. Li, G.X. Wang, H.X. Song, X.N. Wang, Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables, Plant Sci. 167 (2004) 635–643, https://doi.org/10.1016/j.plantsci.2004.05.015. [44] M. Haddad, N.M. Bani-Hani, J.A. Al-Tabbal, A.H. Al-Fraihat, Effect of different potassium nitrate levels on yield and quality of potato tubers, J. Food Agric. Environ. 14 (2016) 101–107. [45] J. Pushpamalar, S.J. Langford, M.B. Ahmad, Y.Y. Lim, K. Hashim, Eco-friendly smart hydrogels for soil conditioning and sustain release fertilizer, Int. J. Environ. Sci. Technol. 15 (2018) 2059–2074, https://doi.org/10.1007/s13762-017-1598-2. [46] A.K. Bajpai, A. Giri, Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical, Carbohydr. Polym. 53 (2003) 271–279. https://doi.org/10.1016/S0144-8617(03)00071-7. [47] O. Wilfred, H. Tai, R. Marriott, Q. Liu, V. Tverezovskiy, S. Curling, H. Tai, Z. Fan, W. Wang, Biodegradation of polylactic acid and starch composites in compost and soil, Int. J. Nano Res. 1 (2018) 01–11, www.innovationinfo.org. [48] S. Muniyasamy, O. Ofosu, M.J. John, R.D. Anandjiwala, Mineralization of poly(lactic acid) (PLA), Poly(3-hydroxybutyrate-co-valerate) (PHBV) and PLA/PHBV blend in compost and soil environments, J. Renew. Mater. 4 (2016) 133–145, https://doi.org/10.7569/JRM.2016.634104. [49] J. Šerá, P. Stloukal, P. Jančová, V. Verney, S. Pekařová, M. Koutný, Accelerated biodegradation of agriculture film based on aromatic-aliphatic copolyester in soil under mesophilic conditions, J. Agric. Food Chem. 64 (2016) 5653–5661, https://doi.org/10.1021/acs.jafc.6b01786. [50] M. Tosin, A. Pischedda, F. Degli-Innocenti, Biodegradation kinetics in soil of a multi-constituent biodegradable plastic, Polym. Degrad. Stab. 166 (2019) 213–218, https://doi.org/10.1016/j.polymdegradstab. 2019.05.034. [51] S. Teixeira, K.M. Eblagon, F. Miranda, M.F.R. Pereira, J.L. Figueiredo, Towards controlled degradation of Poly(lactic) acid in technical applications, C. 7 (2021) 42, https://doi.org/10.3390/c7020042. [52] B.S.Kaith Saruchi, R. Jindal, V. Kumar, Biodegradation of Gum tragacanth acrylic acid based hydrogel and its impact on soil fertility, Polym. Degrad. Stab. 115 (2015) 24–31, https://doi.org/10.1016/j.polymdegradstab. 2015.02.009. | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Agriculture of the Czech Republic (Project No. QK1910392), and the Ministry of Education, Youth and Sports of the Czech Republic (Grant No. RP/CPS/2020/002). | |
utb.wos.affiliation | [Durpekova, Silvie; Bergerova, Eva Domincova; Hanusova, Dominika; Dusankova, Miroslava; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, 760 01, Czech Republic | |
utb.fulltext.projects | QK1910392 | |
utb.fulltext.projects | RP/CPS/2020/002 | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.ou | Centre of Polymer Systems |