Kontaktujte nás | Jazyk: čeština English
dc.title | Unravelling the highly efficient synthesis of individual carbon nanodots from casein micelles and the origin of their competitive constant-blue-red wavelength shift luminescence mechanism for versatile applications | en |
dc.contributor.author | Pricilla, Rajendran Blessy | |
dc.contributor.author | Škoda, David | |
dc.contributor.author | Urbánek, Pavel | |
dc.contributor.author | Urbánek, Michal | |
dc.contributor.author | Šuly, Pavol | |
dc.contributor.author | Domincová Bergerová, Eva | |
dc.contributor.author | Kuřitka, Ivo | |
dc.relation.ispartof | RSC Advances | |
dc.identifier.issn | 2046-2069 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 12 | |
utb.relation.issue | 25 | |
dc.citation.spage | 16277 | |
dc.citation.epage | 16290 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Royal Society of Chemistry | |
dc.identifier.doi | 10.1039/d2ra01911f | |
dc.relation.uri | https://pubs.rsc.org/en/content/articlelanding/2022/RA/D2RA01911F | |
dc.description.abstract | Synthesis of casein-derived carbon nanodots (CND) using a microwave-assisted approach, giving a high product yield (25%), is reported. Casein was used as a sustainable carbon source, and polyvinylpyrrolidone was used as a stabilizer for the nanodots. The size of the prepared amorphous CND corresponds to individual casein coils, which were only partially carbonized. They were obtained due to the disintegration of casein micelles and submicelles within the microwave-assisted solvothermal process. The resulting nanodots had bright photoluminescence, and their electronic structure and optical properties were investigated. A novel competitive model of their luminescence mechanism was introduced to explain a phenomenon beyond the standard models. The synthesized carbon nanodots were used as luminescent ink for anticounterfeit applications. A polymer matrix nanocomposite was prepared by dispersing the nanodots in a flexible and robust poly(styrene-ethylene-butylene-styrene) tri-block copolymer (SEBS) using the solution cast method. For the first time, the effect of CND on the luminescence and mechanical properties of the SEBS/CND self-supporting films was studied. The film was also studied as a phosphor for light-emitting diodes, with a unique experimental setup to avoid self-absorption, which results in low efficiency and eliminates the excess UV transmitted. Because of their high luminescence, photostability, and mechanical properties, these CND could be used as luminescent labels in the packaging and optoelectronics industries. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1010999 | |
utb.identifier.obdid | 43884270 | |
utb.identifier.scopus | 2-s2.0-85133030160 | |
utb.identifier.wok | 000804201000001 | |
utb.identifier.coden | RSCAC | |
utb.source | J-wok | |
dc.date.accessioned | 2022-06-17T09:36:15Z | |
dc.date.available | 2022-06-17T09:36:15Z | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic Program - DKRVO [RP/CPS/2022/007]; MEYS CR [LM2018110] | |
dc.description.sponsorship | RP/CPS/2022/007; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Central European Institute of Technology, CEITEC; Masarykova Univerzita, MU: LM2018110 | |
dc.rights | Attribution-NonCommercial 3.0 Unported | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/3.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Pricilla, Rajendran Blessy | |
utb.contributor.internalauthor | Škoda, David | |
utb.contributor.internalauthor | Urbánek, Pavel | |
utb.contributor.internalauthor | Urbánek, Michal | |
utb.contributor.internalauthor | Šuly, Pavol | |
utb.contributor.internalauthor | Domincová Bergerová, Eva | |
utb.contributor.internalauthor | Kuřitka, Ivo | |
utb.fulltext.affiliation | R. Blessy Pricilla, http://orcid.org/0000-0001-6373-4915 David Skoda, http://orcid.org/0000-0002-3787-1956 Pavel Urbanek, http://orcid.org/0000-0002-9090-4681 Michal Urbanek, http://orcid.org/0000-0003-3200-5036 Pavol Suly, http://orcid.org/0000-0002-7500-7800 Eva Domincova Bergerova http://orcid.org/0000-0002-7046-9782 and Ivo Kuritka http://orcid.org/0000-0002-1016-5170 * Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin 76001, Czech Republic. E-mail: kuritka@utb.cz | |
utb.fulltext.dates | Received 24th March 2022 Accepted 19th May 2022 Published on 01 June 2022 | |
utb.fulltext.references | 1 A. Sciortino, A. Cannizzo and F. Messina, C, 2018, 4, 67. 2 A. Cayuela, M. L. Soriano, C. Carrillo-Carrion and M. Valcarcel, Chem. Commun., 2016, 52, 1311–1326. 3 Y. Park, J. Yoo, B. Lim, W. Kwon and S. W. Rhee, J. Mater. Chem. A, 2016, 4, 11582–11603. 4 J. Zhang and S. H. Yu, Mater. Today, 2016, 19, 382–393. 5 W. Lu, X. Gong, Z. Yang, Y. Zhang, Q. Hu, S. Shuang, C. Dong and M. M. F. Choi, RSC Adv., 2015, 5, 16972–16979. 6 A. V. Longo, A. Sciortino, M. Cannas and F. Messina, Phys. Chem. Chem. Phys., 2020, 22, 13398–13407. 7 A. Sharma and J. Das, J. Nanobiotechnol., 2019, 17, 92. 8 L. Sai, J. Chen, Q. Chang, W. Shi, Q. Chen and L. Huang, RSC Adv., 2017, 7, 16608–16615. 9 W. Wang, C. Damm, J. Walter, T. J. Nacken and W. Peukert, Phys. Chem. Chem. Phys., 2016, 18, 466–475. 10 Q. Ren, L. Ga and J. Ai, ACS Omega, 2019, 4, 15842–15848. 11 M. Varisco, D. Zufferey, A. Ruggi, Y. Zhang, R. Erni and O. Mamula, R. Soc. Open Sci., 2017, 4, 170900. 12 K. M. Omer, S. A. Idrees, A. Q. Hassan and L. A. Jamil, New J. Chem., 2020, 44, 5120–5126. 13 M. Li, Y. Feng, Q. Tian, W. Yao, L. Liu, X. Li, H. Wang and W. Wu, Dalton Trans., 2018, 47, 11264–11271. 14 Z. J. Wang, X. J. Zhao, Z. Z. Guo, P. Miao and X. Gong, Org. Electron., 2018, 62, 284–289. 15 A. G. El-Shamy and H. S. S. Zayied, Synth. Met., 2020, 259, 116218. 16 M. A. Issa and Z. Z. Abidin, Molecules, 2020, 25, 3541. 17 S. Lu, L. Sui, J. Liu, S. Zhu, A. Chen, M. Jin and B. Yang, Adv. Mater., 2017, 29, 1603443. 18 P. Gupta, M. Bera and P. K. Maji, Polym. Adv. Technol., 2017, 28, 1428–1437. 19 J. Andres, R. D. Hersch, J.-E. Moser and A. S. Chauvin, Adv. Funct. Mater., 2014, 24, 5029–5036. 20 K. T. P. Lim, H. Liu, Y. Liu and J. K. W. Yang, Nat. Commun., 2019, 10, 25. 21 J. Y. Park, J. W. Chung and H. K. Yang, Ceram. Int., 2019, 45, 11591–11599. 22 F. Liu, Z. Li, Y. Li, Y. Feng and W. Feng, Carbon, 2021, 181, 9–15. 23 P. Kumar, S. Singh and B. K. Gupta, Nanoscale, 2016, 8, 14297–14340. 24 Z. Zhang, W. Sun and P. Wu, ACS Sustainable Chem. Eng., 2015, 3, 1412–1418. 25 J. Guo, H. Li, L. Ling, G. Li, R. Cheng, X. Lu, A.-Q. Xie, Q. Li, C.-F. Wang and S. Chen, ACS Sustainable Chem. Eng., 2020, 8, 1566–1572. 26 J.-x. Zheng, X.-h. Liu, Y.-z. Yang, X.-g. Liu and B.-s. Xu, New Carbon Mater., 2018, 33, 276–288. 27 Y. Ma, X. Zhang, J. Bai, K. Huang and L. Ren, Chem. Eng. J., 2019, 374, 787–792. 28 S. S. Jones, P. Sahatiya and S. Badhulika, New J. Chem., 2017, 41, 13130–13139. 29 W. T. Hong and H. K. Yang, Optik, 2021, 241, 166449. 30 M. He, J. Zhang, H. Wang, Y. Kong, Y. Xiao and W. Xu, Nanoscale Res. Lett., 2018, 13, 175. 31 H. Li, Y. Xu, L. Zhao, J. Ding, M. Chen, G. Chen, Y. Li and L. Dang, Carbon, 2019, 143, 391–401. 32 N. K. Sahoo, G. C. Jana, M. N. Aktara, S. Das, S. Nayim, A. Patra, P. Bhatttacharjee, K. Bhadra and M. Hossain, Mater. Sci. Eng., C, 2020, 108, 110429. 33 L. Cadesky, M. W. Ribeiro, K. T. Kriner, M. V. Karwe and C. I. Moraru, J. Dairy Sci., 2017, 100, 7055–7070. 34 M. Warncke and U. Kulozik, Foods, 2021, 10, 1361. 35 Y. T. Xie, J. X. Zheng, Y. L. Wang, J. L. Wan, Y. Z. Yang, X. G. Liu and Y. K. Chen, Nanotechnology, 2019, 30, 085406. 36 A. Pal, M. P. Sk and A. Chattopadhyay, Mater. Adv., 2020, 1, 525–553. 37 B. Zhang, Y. Liu, M. Ren, W. Li, X. Zhang, R. Vajtai, P. M. Ajayan, J. M. Tour and L. Wang, ChemSusChem, 2019, 12, 4202–4210. 38 K. J. Mintz, M. Bartoli, M. Rovere, Y. Zhou, S. D. Hettiarachchi, S. Paudyal, J. Chen, J. B. Domena, P. Y. Liyanage, R. Sampson, D. Khadka, R. R. Pandey, S. Huang, C. C. Chusuei, A. Tagliaferro and R. M. Leblanc, Carbon, 2021, 173, 433–447. 39 R. Bandi, B. R. Gangapuram, R. Dadigala, R. Eslavath, S. S. Singh and V. Guttena, RSC Adv., 2016, 6, 28633–28639. 40 F. Victoria, J. Manioudakis, L. Zaroubi, B. Findlay and R. Naccache, RSC Adv., 2020, 10, 32202–32210. 41 J. Ederer, P. Janoš, P. Ecorchard, J. Tolasz, V. Štengl, H. Beneš, M. Perchacz and O. Pop-Georgievski, RSC Adv., 2017, 7, 12464–12473. 42 D. M. Eby, K. Artyushkova, A. K. Paravastu and G. R. Johnson, J. Mater. Chem., 2012, 22, 9875–9883. 43 C. Wang, C. Wang, P. Xu, A. Li, Y. Chen and K. Zhuo, J. Mater. Sci., 2016, 51, 861–867. 44 D. Xu, F. Lei, H. Chen, L. Yin, Y. Shi and J. Xie, RSC Adv., 2019, 9, 8290–8299. 45 A. P. Sirocic, L. K. Krehula, Z. Katancic and Z. H. Murgj, Chem. Biochem. Eng. Q., 2017, 30, 501–509. 46 P. K. Sarswat and M. L. Free, Phys. Chem. Chem. Phys., 2015, 17, 27642–27652. 47 D. L. Vien, N. Colthup, W. Fateley and J. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Boston, 1991. 48 C. Zhu, J. Zhai and S. Dong, Chem. Commun., 2012, 48, 9367–9369. 49 B. Manoj, A. M. Raj and G. T. Chirayil, Sci. Rep., 2017, 7, 18012. 50 I. J. Gomez, M. V. Sullerio, A. Doleckova, N. Pizurova, J. Medalova, R. Roy, D. Necas and L. Zajickova, J. Phys. Chem. C, 2021, 125, 21044–21054. 51 C. M. Carbonaro, R. Corpino, M. Salis, F. Mocci, S. V. Thakkar, C. Olla and P. C. Ricci, C, 2019, 5, 60. 52 J. T. Margraf, V. Strauss, D. M. Guldi and T. Clark, J. Phys. Chem. B, 2015, 119, 7258–7265. 53 G. D. Gesesse, A. G. Berenguer, M.-F. Barthe and C. O. Ania, J. Photochem. Photobiol., A, 2020, 398, 112622. 54 K. J. Mintz, Y. Zhou and R. M. Leblanc, Nanoscale, 2019, 11, 4634–4652. 55 J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi, 1966, 15, 627–637. 56 C. Murru, R. Badia-Laino and M. E. D. Garcia, Antioxidants, 2020, 9, 1147. 57 D. D. Ferreyra, D. R. Sartori, S. D. E. Riega, H. B. Rodriguez and M. C. Gonzalez, Carbon, 2020, 167, 230–243. 58 D. L. Wood and J. Tauc, Weak Absorption Tails in Amorphous Semiconductors, Phys. Rev. B: Solid State, 1972, 5, 3144–3151. 59 I. Studenyak, M. Kranjec and M. Kurik, Int. J. Opt. Appl., 2014, 4, 76–83. 60 K. P. Neha Sharma, S. Ilango, S. Dash and A. K. Tyagi, Advanced Materials Proceedings, 2017, 2, 342–346. 61 Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. F. Wang, P. J. G. Luo, H. Yang, M. E. Kose, B. L. Chen, L. M. Veca and S. Y. Xie, J. Am. Chem. Soc., 2006, 128, 7756–7757. 62 B. Manoj, A. M. Raj and G. C. Thomas, Sci. Rep., 2018, 8, 13891. 63 S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang and B. Yang, Nano Res., 2015, 8, 355–381. 64 B. Zhi, X. X. Yao, Y. Cui, G. Orr and C. L. Haynes, Nanoscale, 2019, 11, 20411–20428. 65 Y. H. Liu, H. Huang, W. J. Cao, B. D. Mao, Y. Liu and Z. H. Kang, Mater. Chem. Front., 2020, 4, 1586–1613. 66 J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, USA, 2006. 67 J. R. Alcala, E. Gratton and F. G. Prendergast, Biophys. J., 1987, 51, 597–604. 68 S. Kalytchuk, Y. Wang, K. Polakova and R. Zboril, ACS Appl. Mater. Interfaces, 2018, 10, 29902–29908. 69 T. Yu, H. Wang, C. Guo, Y. Zhai, J. Yang and J. Yuan, R. Soc. Open Sci., 2018, 5, 180245. 70 X. Liu, T. Z. Li, Y. Hou, Q. H. Wu, J. Yi and G. L. Zhang, RSC Adv., 2016, 6, 11711–11718. 71 P. F. Fox and A. Brodkorb, Int. Dairy J., 2008, 18, 677–684. 72 C. Phadungath, Songklanakarin J. Sci. Technol., 2004, 27, 201–212. 73 J. R. Dios, C. G. Astrain, P. Costa, J. C. Viana and S. L. Mendez, Materials, 2019, 12, 1405. 74 L. Jun, L. Qiaochu, Q. Rongrong and S. Yanhan, China Pat., CN100564416C, 2009. | |
utb.fulltext.sponsorship | The authors appreciate the financial assistance with gratitude from the Ministry of Education, Youth and Sports of the Czech Republic Program - DKRVO (RP/CPS/2022/007). Authors thank P. Machac (Masaryk University) for XPS measurement. CzechNanoLab project LM2018110 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements at CEITEC Nano Research Infrastructure. | |
utb.wos.affiliation | [Pricilla, R. Blessy; Skoda, David; Urbanek, Pavel; Urbanek, Michal; Suly, Pavol; Bergerova, Eva Domincova; Kuritka, Ivo] Tomas Bata Univ Zlin, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, 76001, Czech Republic | |
utb.fulltext.projects | RP/CPS/2022/007 | |
utb.fulltext.projects | LM2018110 | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.ou | Centre of Polymer Systems |