Kontaktujte nás | Jazyk: čeština English
dc.title | Influence of moisture content, temperature, and time on free fatty acid in stored crude palm oil | en |
dc.contributor.author | Emebu, Samuel | |
dc.contributor.author | Osaikhuiwuomwan, Omokaro | |
dc.contributor.author | Mankonen, Aleksi | |
dc.contributor.author | Udoye, Chinweike | |
dc.contributor.author | Okieimen, Charity | |
dc.contributor.author | Janáčová, Dagmar | |
dc.relation.ispartof | Scientific Reports | |
dc.identifier.issn | 2045-2322 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 12 | |
utb.relation.issue | 1 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Nature Portfolio | |
dc.identifier.doi | 10.1038/s41598-022-13998-1 | |
dc.relation.uri | https://www.nature.com/articles/s41598-022-13998-1 | |
dc.description.abstract | Consequent to the importance of crude palm oil (CPO) to global food processing industries, and the need for quality assurance of CPO. A kinetic model that describes changes of free fatty acid (FFA) in industrially stored CPO has been developed. CPO FFA is a well-known indicator of the deterioration of CPO. The effect of initial moisture content, storage temperature, and time on CPO FFA have been investigated in this work. Specifically, statistical multi-regression models for changes in FFA and moisture content (MC) were developed at P-value < 0.05 or 95% confidence interval fence. It was found that CPO FFA increases with an increase in moisture content, temperature, and time in their linear term and in respect to decreases in their quadratic term, and interaction between moisture content and temperature. The CPO MC was also found to decrease with an increase in temperature and time and increases in the quadratic term of temperature. Although while the model for CPO FFA, based on Fisher's F-test: F-model(6.80) < F-95%(19.30), showed no lack-of-fit; that of CPO MC showed lack-of-fit, F-model(13.67) not less than F-95%(4.39). Furthermore, based on inference from the statistical model, their kinetic models were also developed. While the CPO FFA kinetic, found to be a half-order kinetic model and its other auxiliary models showed a very good fit (R-2 {0.9933-0.8614} and RMSE {0.0020-3.6716}); that of CPO MC was a poorly fitted first-order kinetic model (R-2 {0.9885-0.3935} and RMSE {0.0605-17.8501}). | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011026 | |
utb.identifier.obdid | 43883619 | |
utb.identifier.scopus | 2-s2.0-85131896428 | |
utb.identifier.wok | 000811293500046 | |
utb.identifier.pubmed | 35701515 | |
utb.source | J-wok | |
dc.date.accessioned | 2022-07-13T14:42:41Z | |
dc.date.available | 2022-07-13T14:42:41Z | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Department of Automation and Control Engineering | |
utb.contributor.internalauthor | Emebu, Samuel | |
utb.contributor.internalauthor | Janáčová, Dagmar | |
utb.fulltext.affiliation | Samuel Emebu1,2✉, Omokaro Osaikhuiwuomwan2, Aleksi Mankonen3, Chinweike Udoye4, Charity Okieimen2 & Dagmar Janáčová1 1 Department of Automatic Control and Informatics, Tomas Bata University, Jižní Svahy Nad Stráněmi 4511, 76001 Zlin, Czech Republic. 2 Department of Chemical Engineering, University of Benin, PO Box 1154, Benin City, Nigeria. 3 Department of Energy, Lappeenranta-Lahti University of Technology, Mukkulankatu 19, 15210 Lahti, Finland. 4 Institute for Systemic Inflammation Research, University of Lubeck, Ratzeburger Allee 160, 23562 Lubeck, Germany. ✉email: emebu@utb.cz | |
utb.fulltext.dates | Received: 26 January 2022 Accepted: 18 May 2022 Published online: 14 June 2022 | |
utb.fulltext.references | 1. Shahbandeh, M. Vegetable oils: production worldwide 2012/13–2020/21, by type. Statista https://www.statista.com/statistics/263933/production-of-vegetable-oils-worldwide-since-2000/ (2021). 2. Indexmundi. Palm Oil Exports by Country. https://www.indexmundi.com/agriculture/?commodity=palm-oil&graph=exports (2021). 3. Bunchai, A., Suttinun, O., H-Kittikun, A. & Musikavong, C. Life cycle greenhouse gas emissions of palm oil production by wet and dry extraction processes in Thailand. Int. J. Life Cycle Assess. 22(11), 1802–1814 (2016). 4. Poku, K. Small-scale palm oil processing in Africa. http://www.fao.org/3/y4355e/y4355e03.htm (2002). 5. Okomu. Palm oil products. http://okomunigeria.com/ (2021). 6. Malaysian palm oil Board. Recommended practices for storage and transport of edible oils and fats. (2010). 7. Civis-mundi. Palm oil storage temperature. https://civis-mundi.hr/yvaxbj/palm-oil-storage-temperature (2021). 8. Azeman, N. H., Yusof, N. A. & Othman, A. I. Detection of free fatty acid in crude palm oil. Asian J. Chem. 27, 1569–1573 (2015). 9. Mancini, A. et al. Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules 20, 17339–17361 (2015). 10. Zhang, Z.-S., Li, D. & Zhang, L.-X. Effect of heating on the fatty acid composition and oxidation products of flaxseed oil. Asian J. Chem. 25, 10082–10086 (2013). 11. Man, Y. B. C., Moh, M. H. & Voort, F. R. Determination of free fatty acids in crude palm oil and refined-bleached-deodorized palm olein using fourier transform infrared spectroscopy. J. Am. Oil Chem. Soc. 76, 485–490 (1999). 12. Ashaari, A., Ahmad, T., Awang, S. R. & Shukor, N. A. A graph-based dynamic modeling for palm oil refining process. Processes 9, 523 (2021). 13. Metrohm USA Inc. Palm oil product quality determination. News medical life sciences https://www.news-medical.net/whitepaper/20190214/Palm-Oil-Product-Quality-Determination.aspx (2019). 14. Negash, Y. A., Amare, D. E., Bitew, B. D. & Dagne, H. Assessment of quality of edible vegetable oils accessed in Gondar City, Northwest Ethiopia. BMC Res. Notes 12, 1–5 (2019). 15. Constant, L.-L.-N.B. et al. A review of main factors affecting palm oil acidity within the smallholder oil palm (Elaeis guineensis Jacq.) sector in Cameroon. Afr. J. Food Sci. 11, 296–301 (2017). 16. Mahesar, S. A., Sherazi, S. T. H., Khaskheli, A. R., Kandhro, A. A. & Uddin, S. Analytical approaches for the assessment of free fatty acids in oils and fats. Anal. Methods 6, 4956–4963 (2014). 17. de Almeida, D. T., Viana, T. V., Costa, M. M., Silvas, C. S. & Feitosa, S. Effects of different storage conditions on the oxidative stability of crude and refined palm oil, olein and stearin (Elaeis guineensis). Food Sci. Technol. 39, 211–217 (2018). 18. Saffar Taluri, S., Jafari, S. M. & Bahrami, A. Evaluation of changes in the quality of extracted oil from olive fruits stored under different temperatures and time intervals. Sci. Rep. 9, 1–8 (2019). 19. Lin, X. et al. California almond shelf life: lipid deterioration during storage. J. Food Sci. 77, C583–C593 (2012). 20. Jaya, H. S., Wardana, I. N. G., Hamidi, N. & Widhiyanuriyawan, D. Hydrolysis reaction utilizing cavitation from high pressure water jet impinging into palm oil bath. Ain Shams Eng. J. 12, 3905–3918 (2021). 21. Monié, A. et al. Enzymatic hydrolysis of rapeseed oil with a non-GMO lipase: a strategy to substitute mono- and diglycerides of fatty acids and improve the softness of sponge cakes. LWT 137, 110405 (2021). 22. Luo, H. et al. Hydrolysis of vegetable oils to fatty acids using brønsted acidic ionic liquids as catalysts. Ind. Eng. Chem. Res. 53, 11653–11658 (2014). 23. Salimon, J., Abdullah, B. M. & Salih, N. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil. Chem. Central J. 5, 1–9 (2011). 24. Linfield, W. M., Barauskas, R. A., Sivieri, L., Serota, S. & Stevenson, R. W. Enzymatic fat hydrolysis and synthesis. J. Am. Oil Chem. Soc. 61, 191–195 (1984). 25. Lau, H. L. N., Puah, C. W., Choo, Y. M., Ma, A. N. & Chuah, C. H. Simultaneous quantification of free fatty acids, free sterols, squalene, and acylglycerol molecular species in palm oil by high-temperature gas chromatography: flame ionization detection. Lipids 40, 523–528 (2005). 26. Kail, B. W., Link, D. D. & Morreale, B. D. Determination of free fatty acids and triglycerides by gas chromatography using selective esterification reactions. J. Chromatogr. Sci. 50, 934–939 (2012). 27. Ruiz-Gutiérrez, V. & Barron, L. J. R. Methods for the analysis of triacylglycerols. J. Chromatogr. B Biomed. Sci. Appl. 671, 133–168 (1995). 28. Said, S. D., Maimun, T., Asnawi, T. M. & Muslim, A. Inhibition of free fatty acids generation in crude palm oil during storage by using UV-C light treatment. IOP Conf. Ser. Mater. Sci. Eng. 854, 012015 (2020). 29. Nduka, J. K. C., Omozuwa, P. O. & Imanah, O. E. Effect of heating time on the physicochemical properties of selected vegetable oils. Arab. J. Chem. 14, 103063 (2021). 30. Mićić, R. et al. Reduction of free fatty acids in waste oil for biodiesel production by glycerolysis: investigation and optimization of process parameters. Green Process. Synth. 8, 15–23 (2019). 31. Japir, A. A. W. et al. Physicochemical characteristics of high free fatty acid crude palm oil. OCL Oilseeds Fats Crops Lipids 24, D506 (2017). 32. Che Man, Y. B. & Mirghani, M. E. S. Rapid method for determining moisture content in crude palm oil by Fourier transform infrared spectroscopy. J. Am. Oil Chem. Soc. 77, 631–637 (2000). 33. Spiess, A.-N. & Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol. 10, 1–11 (2010). 34. Jim Frost. R-squared is not valid for nonlinear regression: statistics by Jim. https://statisticsbyjim.com/regression/r-squared-invalid-nonlinear-regression/. 35. Gawrysiak-Witulska, M., Rudzińska, M., Wawrzyniak, J. & Siger, A. The effect of temperature and moisture content of stored rapeseed on the phytosterol degradation rate. J. Am. Oil Chem. Soc. 89, 1673–1679 (2012). 36. Kucuk, H., Kilic, A. & Midilli, A. Common applications of thin layer drying curve equations and their evaluation criteria. Prog. Exergy Energy Environ. https://doi.org/10.1007/978-3-319-04681-5_63 (2014). 37. Houle, F. A., Miles, R. E. H., Pollak, C. J. & Reid, J. P. A purely kinetic description of the evaporation of water droplets. J. Chem. Phys. 154, 054501 (2021). 38. Aursand, E. & Ytrehus, T. Comparison of kinetic theory evaporation models for liquid thin-films. Int. J. Multiphase Flow 116, 67–79 (2019). 39. Penner, S. S. On the kinetics of evaporation. J. Phys. Chem. 56, 475–479 (2002). | |
utb.fulltext.sponsorship | - | |
utb.wos.affiliation | [Emebu, Samuel; Janacova, Dagmar] Tomas Bata Univ, Dept Automat Control & Informat, Jizni Svahy Stranemi 4511, Zlin 76001, Czech Republic; [Emebu, Samuel; Osaikhuiwuomwan, Omokaro; Okieimen, Charity] Univ Benin, Dept Chem Engn, POB 1154, Benin, Nigeria; [Mankonen, Aleksi] Lappeenranta Lahti Univ Technol, Dept Energy, Mukkulankatu 19, Lahti 15210, Finland; [Udoye, Chinweike] Univ Lubeck, Inst Syst Inflammat Res, Ratzeburger Allee 160, D-23562 Lubeck, Germany | |
utb.scopus.affiliation | Department of Automatic Control and Informatics, Tomas Bata University, Jižní Svahy Nad Stráněmi 4511, Zlin, 76001, Czech Republic; Department of Chemical Engineering, University of Benin, PO Box 1154, Benin City, Nigeria; Department of Energy, Lappeenranta-Lahti University of Technology, Mukkulankatu 19, Lahti, 15210, Finland; Institute for Systemic Inflammation Research, University of Lubeck, Ratzeburger Allee 160, Lubeck, 23562, Germany | |
utb.fulltext.projects | - | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | Department of Automatic Control and Informatics |