Publikace UTB
Repozitář publikační činnosti UTB

Design of robust PI controllers for interval plants with worst-case gain and phase margin specifications in presence of multiple crossover frequencies

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Design of robust PI controllers for interval plants with worst-case gain and phase margin specifications in presence of multiple crossover frequencies en
dc.contributor.author Matušů, Radek
dc.contributor.author Şenol, Bilal
dc.contributor.author Alagoz, Baris Baykant
dc.contributor.author Pekař, Libor
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 10
dc.citation.spage 67713
dc.citation.epage 67726
dc.type article
dc.language.iso en
dc.publisher IEEE
dc.identifier.doi 10.1109/ACCESS.2022.3186330
dc.relation.uri https://ieeexplore.ieee.org/document/9807284
dc.subject PI control en
dc.subject control systems en
dc.subject uncertainty en
dc.subject mathematical models en
dc.subject thermal stability en
dc.subject feedback control en
dc.subject aircraft en
dc.subject gain margin en
dc.subject interval plant en
dc.subject multiple crossover frequencies en
dc.subject oblique wing aircraft en
dc.subject phase margin en
dc.subject PI controllers en
dc.subject robust control en
dc.subject robust performance en
dc.description.abstract This article deals with the computation of robustly performing Proportional-Integral (PI) controllers for interval plants, where the performance measures are represented by the worst-case Gain Margin (GM) and Phase Margin (PM) specifications, in the event of multiple Phase Crossover Frequencies (PCFs) and/or Gain Crossover Frequencies (GCFs). The multiplicity of PCFs and GCFs poses a considerable complication in frequency-domain control design methods. The paper is a continuation of the authors' previous work that applied the robust PI controller design approach to a Continuous Stirred Tank Reactor (CSTR). This preceding application represented the system with a single PCF and a single GCF, but the current article focuses on a case of multiple PCFs and GCFs. The determination of a robust performance region in the P-I plane is based on the stability/performance boundary locus method and the sixteen plant theorem. In the illustrative example, a robust performance region is obtained for an experimental oblique wing aircraft that is mathematically modeled as the unstable interval plant. The direct application of the method results in the (pseudo-)GM and (pseudo-)PM regions that "illogically" protrude from the stability region. Consequently, a deeper analysis of the selected points in the P-I plane shows that the calculated GM and PM boundary loci are related to the numerically correct values, but that the results may be misleading, especially for the loci outside the stability region, due to the multiplicity of the PCFs and GCFs. Nevertheless, the example eventually shows that the important parts of the GM and PM regions, i.e., the parts that have an impact on the final robust performance region, are valid. Thus, the method is applicable even to unstable interval plants and to the control loops with multiple PCFs and GCFs. en
utb.faculty Faculty of Applied Informatics
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011043
utb.identifier.obdid 43884074
utb.identifier.scopus 2-s2.0-85133811581
utb.identifier.wok 000819814900001
utb.source J-wok
dc.date.accessioned 2022-07-13T14:42:43Z
dc.date.available 2022-07-13T14:42:43Z
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou CEBIA-Tech
utb.ou Department of Automation and Control Engineering
utb.contributor.internalauthor Matušů, Radek
utb.contributor.internalauthor Pekař, Libor
utb.fulltext.affiliation RADEK MATUŠŮ 1, BILAL ŞENOL 2, BARIS BAYKANT ALAGOZ 2, AND LIBOR PEKAŘ 3 1 Centre for Security, Information and Advanced Technologies (CEBIA-Tech), Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic 2 Department of Computer Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Turkey 3 Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic Corresponding author: Radek Matušů (rmatusu@utb.cz)
utb.fulltext.dates Received 25 May 2022 accepted 20 June 2022 date of publication 27 June 2022 date of current version 30 June 2022
utb.fulltext.references [1] K. J. Åström and T. Hägglund, PID Controllers: Theory, Design, and Tuning, 2nd ed. Research Triangle Park, NC, USA: Instrum. Soc. Amer., 1995. [2] A. O'Dwyer, Handbook of PI and PID Controller Tuning Rules, 3rd ed. London, U.K.: Imperial College Press, 2009. [3] L. Desborough and R. Miller, ``Increasing customer value of industrial control performance monitoring-Honeywell's experience,'' in Proc. 6th Int. Conf. Chem. Process Control, vol. 98. New York, NY, USA: Amer. Inst. Chem. Eng., 2002, pp. 169-189. [4] H.Wu,W. Su, and Z. Liu, ``PID controllers: Design and tuning methods,'' in Proc. 9th IEEE Conf. Ind. Electron. Appl., Hangzhou, China, Jun. 2014, pp. 808-813. [5] What is the Percentage of the PID Algorithm Applications in Industry?. Accessed: May 23, 2022. [Online]. Available: https://www.researchgate.net/post/What_is_the_percentage_of_the_PID_algorithm_applications_in_industry [6] S. P. Bhattacharyya, ``Robust control under parametric uncertainty: An overview and recent results,'' Annu. Rev. Control, vol. 44, pp. 45-77, Jan. 2017. [7] S. P. Bhattacharyya, A. Datta, and L. H. Keel, Linear Control Theory: Structure, Robustness, and Optimization. Boca Raton, FL, USA: CRC Press, 2009. [8] Y. I. Neimark, ``Search for the parameter values that make automatic control system stable,'' Automatika Telemehanika, vol. 9, no. 3, pp. 190-203, 1948. [9] D. Mitrović, ``Graphical analysis and synthesis of feedback control systems: I-theory and analysis; II-synthesis; III-sampled-data feedback control systems,'' Trans. Amer. Inst. Electr. Eng., II, Appl. Ind., vol. 77, no. 6, pp. 476-503, 1959. [10] D. D. Šiljak, ``Analysis and synthesis of feedback control systems in the parameter plane: I-linear continuous systems; II-sampled-data systems; III-nonlinear systems,'' Trans. Amer. Inst. Electr. Eng., II, Appl. Ind., vol. 83, no. 75, pp. 449-473, 1964. [11] D. D. Šiljak, ``Generalization of the parameter plane method,'' IEEE Trans. Autom. Control, vol. AC-11, no. 1, pp. 63-70, Jan. 1966. [12] J. Ackermann, Robust Control: The Parameter Space Approach. London, U.K.: Springer, 2002. [13] E. N. Gryazina and B. T. Polyak, ``Stability regions in the parameter space: D-decomposition revisited,'' Automatica, vol. 42, no. 1, pp. 13-26, Jan. 2006. [14] B. N. Le, Q.-G. Wang, and T. H. Lee, ``Development of D-decomposition method for computing stabilizing gain ranges for general delay systems,'' J. Process Control, vol. 25, pp. 94-104, Jan. 2015. [15] P. D. Mandić, T. B. Šekara, M. P. Lazarević, and M. Bošković, ``Dominant pole placement with fractional order PID controllers: D-decomposition approach,'' ISA Trans., vol. 67, pp. 76-86, Mar. 2017. [16] N. Bajcinca, ``Design of robust PID controllers using decoupling at singular frequencies,'' Automatica, vol. 42, no. 11, pp. 1943-1949, Nov. 2006. [17] M.-T. Ho, A. Datta, and S. P. Bhattacharyya, ``A new approach to feedback stabilization,'' in Proc. 35th IEEE Conf. Decis. Control,Kobe, Japan, 1996, pp. 4643-4648. [18] N. Tan and I. Kaya, ``Computation of stabilizing PI controllers for interval systems,'' in Proc. 11th Medit. Conf. Control Automat., Rhodes, Greece, 2003, pp. 1-6. [19] N. Tan, I. Kaya, C. Yeroglu, and D. P. Atherton, ``Computation of stabilizing PI and PID controllers using the stability boundary locus,'' Energy Convers. Manage., vol. 47, no. 18, pp. 3045-3058, Nov. 2006. [20] M. T. Söylemez, N. Munro, and H. Baki, ``Fast calculation of stabilizing PID controllers,'' Automatica, vol. 39, no. 1, pp. 121-126, Jan. 2003. [21] J. Fang, D. Zheng, and Z. Ren, ``Computation of stabilizing PI and PID controllers by using Kronecker summation method,'' Energy Convers. Manage., vol. 50, no. 7, pp. 1821-1827, Jul. 2009. [22] E. Almodaresi and M. Bozorg, ``kp-stable regions in the space of time delay and PI controller coeffcients,'' Int. J. Control, vol. 88, no. 3, pp. 653-662, Mar. 2015. [23] E. Almodaresi and M. Bozorg, ``KP-stable regions in the space of PID controller coefficients,'' IET Control Theory Appl., vol. 11, no. 10, pp. 1642-1647, Jun. 2017. [24] İ. Mutlu, F. Schrödel, N. Bajcinca, D. Abel, and M. T. Söylemez, ``Lyapunov equation based stability mapping approach: A MIMO case study,'' IFAC-PapersOnLine, vol. 49, no. 9, pp. 130-135, 2016. [25] N. Hohenbichler, ``All stabilizing PID controllers for time delay systems,'' Automatica, vol. 45, no. 11, pp. 2678-2684, Nov. 2009. [26] N. Bajcinca, ``Computation of stable regions in PID parameter space for time delay systems,'' in Proc. 5th IFAC Workshop Time-Delay Syst., Leuven, Belgium, 2004, pp. 1-6. [27] I. Kaya and S. Atic, ``PI controller design based on generalized stability boundary locus,'' in Proc. 20th Int. Conf. Syst. Theory, Control Comput. (ICSTCC), Sinaia, Romania, Oct. 2016, pp. 24-28. [28] S. Atic and I. Kaya, ``PID controller design based on generalized stability boundary locus to control unstable processes with dead time,'' in Proc. 26th Medit. Conf. Control Autom. (MED), Zadar, Croatia, Jun. 2018, pp. 1-6. [29] S. Atic, E. Cokmez, F. Peker, and I. Kaya, ``PID controller design for controlling integrating processes with dead time using generalized stability boundary locus,'' IFAC-PapersOnLine, vol. 51, no. 4, pp. 924-929, 2018. [30] F. Schrödel, S. K. Manickavasagam, and D. Abel, ``A comparative overview of different approaches for calculating the set of all stabilizing PID controller parameters,'' IFAC-PapersOnLine, vol. 48, no. 14, pp. 43-49, 2015. [31] I. Mutlu, F. Schrodel, D. Mihailescu-Stoica, K. Alaa, and M. T. Soylemez, ``A case study on determining stability boundaries of parameter uncertain systems,'' in Proc. 26th Medit. Conf. Control Autom. (MED), Zadar, Croatia, Jun. 2018, pp. 1-9. [32] K. Alaa, I. Mutlu, F. Schrodel, D. Mihailescu-Stoica, and R. Vosswinkel, ``A combined approach to determine robustly stabilizing parameter spaces,'' in Proc. 27th Medit. Conf. Control Autom. (MED), Akko, Israel, Jul. 2019, pp. 106-111. [33] B. R. Barmish, C. V. Hollot, F. J. Kraus, and R. Tempo, ``Extreme point results for robust stabilization of interval plants with first-order compensators,'' IEEE Trans. Autom. Control, vol. 37, no. 6, pp. 707-714, Jun. 1992. [34] B. R. Barmish, New Tools for Robustness of Linear Systems. New York, NY, USA: Macmillan, 1994. [35] R. Matušů and R. Prokop, ``Computation of robustly stabilizing PID controllers for interval systems,'' SpringerPlus, vol. 5, no. 1, pp. 1-15, Dec. 2016, doi: 10.1186/s40064016-2341-z. [36] H. Chapellat and S. P. Bhattacharyya, ``A generalization of Kharitonov's theorem; robust stability of interval plants,'' IEEE Trans. Autom. Control, vol. 34, no. 3, pp. 306-311, Mar. 1989. [37] Y. J. Huang and Y.-J. Wang, ``Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem,'' ISA Trans., vol. 39, no. 4, pp. 419-431, Sep. 2000. [38] C. Yeroglu and N. Tan, ``Design of robust PI controller for vehicle suspension system,'' J. Electr. Eng. Technol., vol. 3, no. 1, pp. 135-142, Mar. 2008. [39] I. D. Diaz-Rodriguez and S. P. Bhattacharyya, ``PI controller design in the achievable gain-phase margin plane,'' in Proc. IEEE 55th Conf. Decis. Control (CDC), Las Vegas, NV, USA, Dec. 2016, pp. 4919-4924. [40] T. Bünte, ``Mapping of Nyquist/Popov theta-stability margins into parameter space,'' IFAC-PapersOnLine, vol. 33, no. 14, pp. 519-524, 2000. [41] D. Odenthal and P. Blue, ``Mapping of frequency response performance specifications into parameter space,'' IFAC-PapersOnLine, vol. 33, no. 14, pp. 531-536, 2000. [42] L. Pyta, R. Vobwinkel, F. Schrodel, N. Bajcinca, and D. Abel, ``Parameter space approach for performance mapping using Lyapunov stability,'' in Proc. 26th Medit. Conf. Control Autom. (MED), Zadar, Croatia, Jun. 2018, pp. 1-9. [43] R. Voßwinkel, L. Pyta, F. Schrödel, İ. Mutlu, D. Mihailescu-Stoica, and N. Bajcinca, ``Performance boundary mapping for continuous and discrete time linear systems,'' Automatica, vol. 107, pp. 272-280, Sep. 2019. [44] Y. J. Wang, ``Graphical computation of gain and phase margin specifications-oriented robust PID controllers for uncertain systems with time-varying delay,'' J. Process Control, vol. 21, no. 4, pp. 475-488, Apr. 2011. [45] X.-W. Zhao and J.-Y. Ren, ``Computation of PID stabilizing region with stabilized margins,'' Opt. Precis. Eng., vol. 21, no. 12, pp. 3214-3222, 2013. [46] Y.-J. Wang, S.-T. Huang, and K.-H. You, ``Calculation of robust and optimal fractional PID controllers for time delay systems with gain margin and phase margin specifications,'' in Proc. 36th Chin. Control Conf. (CCC), Xi'an, China, Jul. 2017, pp. 3077-3082. [47] Y.-J.Wang, ``Determination of all feasible robust PID controllers for openloop unstable plus time delay processes with gain margin and phase margin specifications,'' ISA Trans., vol. 53, no. 2, pp. 628-646, Mar. 2014. [48] F. Asadi, Robust Control of DC-DC Converters: The Kharitonov's Theorem Approach With MATLABr Codes. San Rafael, CA, USA: Morgan & Claypool, 2018. [49] T. Mori and S. Barnett, ``On stability tests for some classes of dynamical systems with perturbed coefficients,'' IMA J. Math. Control Inf., vol. 5, no. 2, pp. 117-123, 1988. [50] H. Chapellat, M. Dahleh, and S. P. Bhattacharyya, ``Robust stability under structured and unstructured perturbations,'' IEEE Trans. Autom. Control, vol. 35, no. 10, pp. 1100-1108, Oct. 1990. [51] C. V. Hollot and R. Tempo, ``On the Nyquist envelope of an interval plant family,'' IEEE Trans. Autom. Control, vol. 39, no. 2, pp. 391-396, Feb. 1994. [52] N. Tan and D. P. Atherton, ``A user friendly toolbox for the analysis of interval systems,'' in Proc. 3rd IFAC Symp. Robust Control Design, Prague, Czech Republic, 2000, pp. 501-506. [53] N. Sayyaf and M. S. Tavazoei, ``Frequency data-based procedure to adjust gain and phase margins and guarantee the uniqueness of crossover frequencies,'' IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2176-2185, Mar. 2020. [54] R. Matusu, B. Senol, and L. Pekar, ``Robust PI control of interval plants with gain and phase margin specifications: Application to a continuous stirred tank reactor,'' IEEE Access, vol. 8, pp. 145372-145380, 2020. [55] R. C. Dorf, Modern Control Systems. Reading, MA, USA: Addison-Wesley, 1974. [56] V. L. Kharitonov, ``Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,'' Differentsial'nye Uravneniya, vol. 14, pp. 2086-2088, Jan. 1978. [57] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Upper Saddle River, NJ, USA: Prentice-Hall, 1996. [58] M. Šebek and Z. Hurák, ``An often missed detail: Formula relating peek sensitivity with gain margin less than one,'' in Proc. 17th Int. Conf. Process Control, Štrbské Pleso, Slovakia, 2009, pp. 65-72.
utb.fulltext.sponsorship -
utb.wos.affiliation [Matusu, Radek] Tomas Bata Univ Zlin, Fac Appl Informat, Ctr Secur Informat & Adv Technol CEBIA Tech, Zlin 76001, Czech Republic; [Senol, Bilal; Alagoz, Baris Baykant] Inonu Univ, Fac Engn, Dept Comp Engn, TR-44280 Malatya, Turkey; [Pekar, Libor] Tomas Bata Univ Zlin, Fac Appl Informat, Dept Automat & Control Engn, Zlin 76001, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlín, Centre for Security, Information and Advanced Technologies (CEBIA-Tech), Faculty of Applied Informatics, Zlín, 760 01, Czech Republic; Inonu University, Faculty of Engineering, Department of Computer Engineering, Malatya, 44280, Turkey; Tomas Bata University in Zlín, Faculty of Applied Informatics, Department of Automation and Control Engineering, Zlín, 760 01, Czech Republic
utb.fulltext.projects -
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou CEBIA-Tech
utb.fulltext.ou Department of Automation and Control Engineering
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International