Kontaktujte nás | Jazyk: čeština English
dc.title | Is geopolitical risk priced in the cross-section of cryptocurrency returns? | en |
dc.contributor.author | Long, Huaigang | |
dc.contributor.author | Demir, Ender | |
dc.contributor.author | Będowska-Sójka, Barbara | |
dc.contributor.author | Zaremba, Adam | |
dc.contributor.author | Shahzad, Syed Jawad Hussain | |
dc.relation.ispartof | Finance Research Letters | |
dc.identifier.issn | 1544-6123 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1544-6131 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 49 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier Ltd | |
dc.identifier.doi | 10.1016/j.frl.2022.103131 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S1544612322003543 | |
dc.subject | cryptocurrencies | en |
dc.subject | the cross-section of returns | en |
dc.subject | asset pricing | en |
dc.subject | geopolitical risk | en |
dc.subject | return predictability | en |
dc.description.abstract | We examine the role of geopolitical risk in the cross-sectional pricing of cryptocurrencies. We calculate cryptocurrency exposure to changes in the geopolitical risk index and document that coins with the lowest geopolitical beta outperform those with high geopolitical beta. Our findings suggest that risk-averse investors require additional compensation as motivation to hold cryptocurrencies with low and negative geopolitical betas, and they are willing to pay a premium for assets with high and positive geopolitical betas. The effect cannot be explained by known return predictors and is robust to many considerations. | en |
utb.faculty | Faculty of Management and Economics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011074 | |
utb.identifier.obdid | 43883887 | |
utb.identifier.scopus | 2-s2.0-85134582380 | |
utb.identifier.wok | 000831658600012 | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-08-17T13:17:24Z | |
dc.date.available | 2022-08-17T13:17:24Z | |
dc.description.sponsorship | Narodowym Centrum Nauki, NCN: 2021/41/B/HS4/02443 | |
dc.description.sponsorship | National Science Center of Poland [2021/41/B/HS4/02443] | |
dc.rights | Attribution-NonCommercial-NoDerivs 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights.access | openAccess | |
utb.contributor.internalauthor | Demir, Ender | |
utb.fulltext.affiliation | Huaigang Long a,*, Ender Demir b,f, Barbara Będowska-Sójka c, Adam Zaremba d,e, Syed Jawad Hussain Shahzad d a School of Finance, Zhejiang University of Finance and Economics, 18 Xueyuan Street, Hangzhou, Zhejiang 310018, China b Department of Business Administration, School of Social Sciences, Reykjavik University, Menntavegur 1, 102, 101, Reykjavík, Iceland c Department of Econometrics, Institute of Informatics and Quantitative Economics, Poznan University of Economics and Business, al. Niepodległości 10, Poznań 61-875, Poland d Montpellier Business School, 2300 Avenue des Moulins, Montpellier 34185 Cedex 4, France e Department of Investment and Financial Markets, Institute of Finance, Poznan University of Economics and Business, al. Niepodległości 10, Poznań 61-875, Poland f Tomas Bata University in Zlin, Zlin, Czech Republic * Corresponding author at: School of Finance, Zhejiang University of Finance and Economics, 18 Xueyuan Street, Hangzhou City, Zhejiang Prov, China 310018. E-mail address: longhuaigang@zufe.edu.cn (H. Long). | |
utb.fulltext.dates | Received 20 May 2022 Received in revised form 21 June 2022 Accepted 5 July 2022 Available online 6 July 2022 | |
utb.fulltext.references | Al Mamun, M., Uddin, G.S., Suleman, M.T., Kang, S.H., 2020. Geopolitical risk, uncertainty and Bitcoin investment. Phys. Stat. Mech. Appl. 540, 123107. Aloui, C., ben Hamida, H., Yarovaya, L., 2021. Are Islamic gold-backed cryptocurrencies different? Financ. Res. Lett. 39, 101615. Amihud, Y., 2002. Illiquidity and stock returns: cross-section and time-series effects. J. Financ. Mark. 5 (1), 31–56. Ang, A., Hodrick, R.J., Xing, Y., Zhang, X., 2006. The cross-section of volatility and expected returns. J. Financ. 61 (1), 259–299. Asness, C.S., Moskowitz, T.J., Pedersen, L.H., 2013. Value and momentum everywhere. J. Financ. 68 (3), 929–985. Aysan, A.F., Demir, E., Gozgor, G., Lau, C.K.M., 2019. Effects of the geopolitical risks on Bitcoin returns and volatility. Res. Int. Bus. Financ. 47, 511–518. Baker, S.R., Bloom, N., Davis, S.J., 2016. Measuring economic policy uncertainty. Q. J. Econ. 131 (4), 1593–1636. Bali, T.G., Brown, S.J., Tang, Y., 2017. Is economic uncertainty priced in the cross-section of stock returns? J Financ Econ 126 (3), 471–489. Bali, T.G., Cakici, N., Whitelaw, R.F., 2011. Maxing out: stocks as lotteries and the cross-section of expected returns. J financ econ 99 (2), 427–446. Baur, D.G., Smales, L.A., 2020. Hedging geopolitical risk with precious metals. J. Bank. Financ. 117, 105823. Będowska-Sójka, B., Demir, E., & Zaremba, A. (2022). Hedging geopolitical risks with different asset classes: a focus on the Russian invasion of Ukraine. Available at SSRN 4085689. Bouri, E., Gupta, R., Vo, X.V., 2022a. Jumps in geopolitical risk and the cryptocurrency market: the singularity of Bitcoin. Def. Peace Econ. 33 (2), 150–161. Bouri, E., Kristoufek, L., Ahmad, T., Shahzad, S.J.H., 2022b. Microstructure noise and idiosyncratic volatility anomalies in cryptocurrencies. Ann Oper Res forthcoming. Burggraf, T., Rudolf, M., 2021. Cryptocurrencies and the low volatility anomaly. Financ. Res. Lett. 40, 101683. Caldara, D., Iacoviello, M., 2022. Measuring geopolitical risk. Am. Econ. Rev. 112 (4), 1194–1225. Chatziantoniou, I., Degiannakis, S., Delis, P., Filis, G., 2021. Forecasting oil price volatility using spillover effects from uncertainty indices. Financ. Res. Lett. 42, 101885. Colon, F., Kim, C., Kim, H., Kim, W., 2021. The effect of political and economic uncertainty on the cryptocurrency market. Financ. Res. Lett. 39, 101621. Cosemans, M., Frehen, R., 2021. Salience theory and stock prices: empirical evidence. J. Financ. Econ. 140 (2), 460–483. Fama, E.F., MacBeth, J.D., 1973. Risk, return, and equilibrium: empirical tests. J. Polit. Econ. 81 (3), 607–636. French, K.R. (2022). U.S. research returns data. Data Library. Retrieved from https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html (accessed 25/04/2022). Hui, H.C., 2021. The long-run effects of geopolitical risk on foreign exchange markets: evidence from some ASEAN countries. Int. J. Emerg. Mark. forthcoming. Iacoviello, M. (2022). Geopolitical risk (GPR) index. Retrieved from https://www.matteoiacoviello.com/gpr.htm (accessed 25/04/2022). Jensen, T.I., Kelly, B.T., & Pedersen, L.H. (2021). Is there a replication crisis in finance? NBER working paper no. w28432. National Bureau of Economic Research. Available at https://www.nber.org/papers/w28432. Jia, B., Goodell, J.W., Shen, D., 2022. Momentum or reversal: which is the appropriate third factor for cryptocurrencies? Financ. Res. Lett. 45, 102139. Jia, Y., Liu, Y., Yan, S., 2021. Higher moments, extreme returns, and cross–section of cryptocurrency returns. Financ. Res. Lett. 39, 101536. Jiang, Y., Wang, G.J., Wen, D.Y., Yang, X.G., 2020. Business conditions, uncertainty shocks and Bitcoin returns. Evol. Instit. Econ. Rev. 17 (2), 415–424. Lee, C.C., Lee, C.C., Li, Y.Y., 2021. Oil price shocks, geopolitical risks, and green bond market dynamics. N. Am. J. Econ. Financ. 55, 101309. Li, Y., Urquhart, A., Wang, P., Zhang, W., 2021. MAX momentum in cryptocurrency markets. Int. Rev. Financ. Anal. 77, 101829. Liang, C., Zhang, Y., Li, X., Ma, F., 2022. Which predictor is more predictive for Bitcoin volatility? And why? Int. J. Financ. Econ. 27 (2), 1947–1961. Liu, W., Liang, X., Cui, G., 2020. Common risk factors in the returns on cryptocurrencies. Econ. Model. 86, 299–305. Liu, Y., Tsyvinski, A., 2021. Risks and returns of cryptocurrency. Rev. Financ. Stud 34 (6), 2689–2727. Liu, Y., Tsyvinski, A., Wu, X., 2022. Common risk factors in cryptocurrency. J. Financ. 77 (2), 1133–1177. Long, H., Zaremba, A., Demir, E., Szczygielski, J.J., Vasenin, M., 2020. Seasonality in the cross-section of cryptocurrency returns. Financ. Res. Lett. 35, 101566. Mohrschladt, H., 2021. The ordering of historical returns and the cross-section of subsequent returns. J. Bank. Financ. 125, 106064. Newey, W.K., West, K.D., 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation. Econometrica 55 (3), 703–708. Newey, W.K., West, K.D., 1994. Automatic lag selection in covariance matrix estimation. Rev. Econ. Stud. 61 (4), 631–653. Ozdamar, M., Akdeniz, L., Sensoy, A., 2021. Lottery-like preferences and the MAX effect in the cryptocurrency market. Financ. Innov. 7 (1), 1–27. Patel, P.C., Pereira, I., 2021. The relationship between terrorist attacks and cryptocurrency returns. Appl. Econ. 53 (8), 940–961. Salisu, A.A., Cunado, J., Gupta, R., 2022. Geopolitical risks and historical exchange rate volatility of the BRICS. Int. Rev. Econ. Financ. 77, 179–190. Salisu, A.A., Lasisi, L., Tchankam, J.P., 2021. Historical geopolitical risk and the behaviour of stock returns in advanced economies. Eur. J. Financ. 1–18. Selmi, R., Bouoiyour, J., Wohar, M.E., 2022. Digital Gold” and geopolitics. Res. Int. Bus. Financ. 59, 101512. Shen, D., Urquhart, A., Wang, P., 2020. A three-factor pricing model for cryptocurrencies. Financ. Res. Lett. 34, 101248. Su, C.W., Qin, M., Tao, R., Shao, X.F., Albu, L.L., Umar, M., 2020. Can Bitcoin hedge the risks of geopolitical events? Technol. Forecast. Soc. Change 159, 120182. Tzouvanas, P., Kizys, R., Tsend-Ayush, B., 2020. Momentum trading in cryptocurrencies: short-term returns and diversification benefits. Econ. Lett. 191, 108728. Umar, Z., Polat, O., Choi, S.Y., Teplova, T., 2022. The impact of the Russia-Ukraine conflict on the connectedness of financial markets. Financ. Res. Lett., 102976 Wang, Y., Bouri, E., Fareed, Z., Dai, Y., 2022. Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine. Financ. Res. Lett. forthcoming. Zaremba, A., Cakici, N., Demir, E., Long, H., 2022. When bad news is good news: geopolitical risk and the cross-section of emerging market stock returns. J. Financ. Stab. 58, 100964. Zhang, W., Li, Y., 2020. Is idiosyncratic volatility priced in cryptocurrency markets? Res. Int. Bus. Financ. 54, 101252. Zhang, W., Li, Y., 2021.. Liquidity risk and expected cryptocurrency returns. Int. J. Financ. Econ. forthcoming. Zhang, W., Li, Y., Xiong, X., 2021.. Downside risk and the cross-section of cryptocurrency returns. J. Bank. Financ. 133, 106246. | |
utb.fulltext.sponsorship | We thank Andrew Urquhart and John W. Goodell for helpful comments and suggestions. Barbara Będowska-Sójka acknowledges the support of the National Science Center of Poland [grant no. 2021/41/B/HS4/02443]. | |
utb.wos.affiliation | [Long, Huaigang] Zhejiang Univ Finance & Econ, Sch Finance, 18 Xueyuan St, Hangzhou 310018, Zhejiang, Peoples R China; [Demir, Ender] Reykjavik Univ, Sch Social Sci, Dept Business Adm, Menntavegur 1, 102, 101 Reykjavik, Iceland; [Bedowska-Sojka, Barbara] Poznan Univ Econ & Business, Inst Informat & Quantitat Econ, Dept Econometr, al Niepodleglosci 10, 61-875 Poznan, Poland; [Zaremba, Adam; Shahzad, Syed Jawad Hussain] Montpellier Business Sch, 2300 Ave Moulins, F-34185 Montpellier 4, France; [Zaremba, Adam] Poznan Univ Econ & Business, Inst Finance, Dept Investment & Financial Markets, al Niepodleglosci 10, 61-875 Poznan, Poland; [Demir, Ender] Tomas Bata Univ Zlin, Zlin, Czech Republic | |
utb.scopus.affiliation | School of Finance, Zhejiang University of Finance and Economics, 18 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Department of Business Administration, School of Social Sciences, Reykjavik University, Menntavegur 1, 102, 101, Reykjavík, Iceland; Department of Econometrics, Institute of Informatics and Quantitative Economics, Poznan University of Economics and Business, al. Niepodległości 10, Poznań, 61-875, Poland; Montpellier Business School, 2300 Avenue des Moulins, Montpellier, 34185 Cedex 4, France; Department of Investment and Financial Markets, Institute of Finance, Poznan University of Economics and Business, al. Niepodległości 10, Poznań, 61-875, Poland; Tomas Bata University in Zlin, Zlin, Czech Republic | |
utb.fulltext.projects | 2021/41/B/HS4/02443 | |
utb.fulltext.faculty | - | |
utb.fulltext.ou | - | |
utb.identifier.jel | F51 | |
utb.identifier.jel | G11 | |
utb.identifier.jel | G12 | |
utb.identifier.jel | H56 |