Publikace UTB
Repozitář publikační činnosti UTB

Enzyme-catalyzed polymerization process: A novel approach to the preparation of polyaniline colloidal dispersions with an immunomodulatory effect

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Enzyme-catalyzed polymerization process: A novel approach to the preparation of polyaniline colloidal dispersions with an immunomodulatory effect en
dc.contributor.author Jasenská, Daniela
dc.contributor.author Kašpárková, Věra
dc.contributor.author Vašíček, Ondřej
dc.contributor.author Münster, Lukáš
dc.contributor.author Minařík, Antonín
dc.contributor.author Káčerová, Simona
dc.contributor.author Korábková, Eva
dc.contributor.author Urbánková, Lucie
dc.contributor.author Vícha, Jan
dc.contributor.author Capáková, Zdenka
dc.contributor.author Falleta, Ermelinda
dc.contributor.author Della Pina, Cristina
dc.contributor.author Lehocký, Marián
dc.contributor.author Skopalová, Kateřina
dc.contributor.author Humpolíček, Petr
dc.relation.ispartof Biomacromolecules
dc.identifier.issn 1525-7797 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1526-4602 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 23
utb.relation.issue 8
dc.citation.spage 3359
dc.citation.epage 3370
dc.type article
dc.language.iso en
dc.publisher American Chemical Society
dc.identifier.doi 10.1021/acs.biomac.2c00371
dc.relation.uri https://pubs.acs.org/doi/10.1021/acs.biomac.2c00371
dc.description.abstract A green, nature-friendly synthesis of polyaniline colloidal particles based on enzyme-assisted oxidation of aniline with horseradish peroxidase and chitosan or poly(vinyl alcohol) as steric stabilizers was successfully employed. Physicochemical characterization revealed formation of particles containing the polyaniline emeraldine salt and demonstrated only a minor effect of polymer stabilizers on particle morphology. All tested colloidal particles showed in vitro antioxidation activity determined via scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. In vitro, they were able to reduce oxidative stress and inhibit the production of reactive oxygen species by neutrophils and inflammatory cytokines by macrophages. The anti-inflammatory effect observed was related to their antioxidant activity, especially in the case of neutrophils. The particles can thus be especially advantageous as active components of biomaterials modulating the early stages of inflammation. In addition to the immunomodulatory effect, the presence of intrinsically conducting polyaniline can impart cell-instructive properties to the particles. The approach to particle synthesis that we employed-an original one using environmentally friendly and biocompatible horseradish peroxidase-represents a smart way of preparing conducting particles with unique properties, which can be further modified by the stabilizers used. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1011082
utb.identifier.obdid 43884114
utb.identifier.scopus 2-s2.0-85135599232
utb.identifier.wok 000835322900001
utb.identifier.pubmed 35900922
utb.source J-wok
dc.date.accessioned 2022-08-17T13:17:25Z
dc.date.available 2022-08-17T13:17:25Z
dc.description.sponsorship Czech Science Foundation [20-28732S]; Ministry of Education, Youth and Sports of the Czech Republic-DKRVO [RP/CPS/2022/001]; TBU in Zlin [IGA/CPS/2022/001]; project OP RDE Junior Grants of TBU in Zlin [CZ.02.2.69/0.0/0.0/19_073/0016941]; European Structural and Investment Funds, Operational Program Research, Development and Education-"Preclinical Progression of New Organic Compounds with Targeted Biological Activity" (Preclinprogress) [CZ.02.1.01/0.0/0.0/16_025/0007381]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Jasenská, Daniela
utb.contributor.internalauthor Kašpárková, Věra
utb.contributor.internalauthor Münster, Lukáš
utb.contributor.internalauthor Minařík, Antonín
utb.contributor.internalauthor Káčerová, Simona
utb.contributor.internalauthor Korábková, Eva
utb.contributor.internalauthor Urbánková, Lucie
utb.contributor.internalauthor Vícha, Jan
utb.contributor.internalauthor Capáková, Zdenka
utb.contributor.internalauthor Lehocký, Marián
utb.contributor.internalauthor Skopalová, Kateřina
utb.contributor.internalauthor Humpolíček, Petr
utb.fulltext.affiliation Daniela Jasenská, Věra Kašpárková,* Ondřej Vašíček,* Lukáš Münster, Antonín Minařík, Simona Káčerová, Eva Korábková, Lucie Urbánková, Jan Vícha, Zdenka Capáková, Ermelinda Falleta, Cristina Della Pina, Marián Lehocký, Kateřina Skopalová, and Petr Humpolíček* AUTHOR INFORMATION Corresponding Authors Věra Kašpárková − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; Email: vkasparkova@utb.cz Ondřej Vašíček − Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; orcid.org/0000-0001-5892-0457; Email: ondrej.vasicek@ibp.cz Petr Humpolíček − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; orcid.org/0000-0002-6837-6878; Email: humpolicek@utb.cz Authors Daniela Jasenská − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic Lukáš Münster − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; orcid.org/0000-0003-1643-2038 Antonín Minařík − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; orcid.org/0000-0002-0055-675X Simona Káčerová − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic Eva Korábková − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic Lucie Urbánková − Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic Jan Vícha − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; orcid.org/0000-0003-3698-8236 Zdenka Capáková − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic Ermelinda Falleta − Department of Chemistry, University of Milan, 20133 Milan, Italy Cristina Della Pina − Department of Chemistry, University of Milan, 20133 Milan, Italy Marián Lehocký − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic Kateřina Skopalová − Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic Complete contact information is available at: https://pubs.acs.org/10.1021/acs.biomac.2c00371
utb.fulltext.dates Received: April 19, 2022 Revised: July 8, 2022 Published: July 28, 2022
utb.fulltext.references (1) Zamani, F. G.; Moulahoum, H.; Ak, M.; Demirkol, D. O.; Timur, S. Current Trends in the Development of Conducting Polymers-Based Biosensors. TrAC, Trends Anal. Chem. 2019, 118, 264−276. (2) Wang, G.; Vivek, R.; Wang, J.-Y. Polyaniline Nanoparticles: Synthesis, Dispersion and Biomedical Applications. Mini-Rev. Org. Chem. 2017, 14, 56−64. (3) Bagheri, B.; Zarrintaj, P.; Surwase, S. S.; Baheiraei, N.; Saeb, M. R.; Mozafari, M.; Kim, Y. C.; Park, O. O. Self-Gelling Electroactive Hydrogels Based on Chitosan−Aniline Oligomers/Agarose for Neural Tissue Engineering with on-Demand Drug Release. Colloids Surf., B 2019, 184, No. 110549. (4) Stejskal, J.; Gilbert, R. G. Polyaniline. Preparation of a Conducting Polymer (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 857−867. (5) Wei, X. L.; Bobeczko, C.; Epstein, A. J. Synthesis and Physical Properties of Highly Sulfonated Polyaniline. Technical Report; AD-A-305369/1/XAB; Department of Physics, Ohio State University: Columbus, OH; 1996. (6) Cao, Y.; Smith, P.; Heeger, A. J. Counter-Ion Induced Processibility of Conducting Polyaniline. Synth. Met. 1993, 57, 3514−3519. (7) Stejskal, J.; Kratochvíl, P.; Helmstedt, M. Polyaniline Dispersions. 5. Poly(Vinyl Alcohol) and Poly(N-Vinylpyrrolidone) as Steric Stabilizers. Langmuir 1996, 12, 3389−3392. (8) Chen, F.; Liu, P. Conducting Polyaniline Nanoparticles and Their Dispersion for Waterborne Corrosion Protection Coatings. ACS Appl. Mater. Interfaces 2011, 3, 2694−2702. (9) Yoo, J. E.; Bae, J. High-Performance Fabric-Based Supercapacitors Using Water-Dispersible Polyaniline-Poly(2-Acrylamido-2-Methyl-1-Propanesulfonic Acid). Macromol. Res. 2015, 23, 749−754. (10) Kucekova, Z.; Humpolicek, P.; Kasparkova, V.; Perecko, T.; Lehocký, M.; Hauerlandová, I.; Sáha, P.; Stejskal, J. Colloidal Polyaniline Dispersions: Antibacterial Activity, Cytotoxicity and Neutrophil Oxidative Burst. Colloids Surf., B 2014, 116, 411−417. (11) Boomi, P.; Poorani, G. P.; Palanisamy, S.; Selvam, S.; Ramanathan, G.; Ravikumar, S.; Barabadi, H.; Prabu, H. G.; Jeyakanthan, J.; Saravanan, M. Evaluation of Antibacterial and Anticancer Potential of Polyaniline-Bimetal Nanocomposites Synthesized from Chemical Reduction Method. J. Cluster Sci. 2019, 30, 715−726. (12) Bober, P.; Humpolíček, P.; Syrový, T.; Capáková, Z.; Syrová, L.; Hromádková, J.; Stejskal, J. Biological Properties of Printable Polyaniline and Polyaniline−Silver Colloidal Dispersions Stabilized by Gelatin. Synth. Met. 2017, 232, 52−59. (13) Kašpárková, V; Jasenská, D.; Capáková, Z.; Maráková, N.; Stejskal, J.; Bober, P.; Lehocký, M.; Humpolíček, P. Polyaniline Colloids Stabilized with Bioactive Polysaccharides: Non-Cytotoxic Antibacterial Materials. Carbohydr. Polym. 2019, 219, 423−430. (14) Jasenská, D.; Kašpárková, V.; Radaszkiewicz, K. A.; Capáková, Z.; Pacherník, J.; Trchová, M.; Minařík, A.; Vajd’ák, J.; Bárta, T.; Stejskal, J.; Lehocký, M.; Truong, T. H.; Moučka, R.; Humpolíček, P. Conducting Composite Films Based on Chitosan or Sodium Hyaluronate. Properties and Cytocompatibility with Human Induced Pluripotent Stem Cells. Carbohydr. Polym. 2021, 253, No. 117244. (15) Jin, W.; Wang, R.; Huang, X. Horseradish Peroxidase-Catalyzed Oxidative Polymerization of Aniline in Bicontinuous Microemulsion Stabilized by AOT/SDS. J. Mol. Liq. 2020, 302, No. 112529. (16) Cruz-Silva, R.; Ruiz-Flores, C.; Arizmendi, L.; Romero-García, J.; Arias-Marin, E.; Moggio, I.; Castillon, F. F.; Farias, M. H. Enzymatic Synthesis of Colloidal Polyaniline Particles. Polymer 2006, 47, 1563−1568. (17) Cruz-Silva, R.; Escamilla, A.; Nicho, M. E.; Padron, G.; Ledezma-Perez, A.; Arias-Marin, E.; Moggio, I.; Romero-Garcia, J. Enzymatic Synthesis of PH-Responsive Polyaniline Colloids by Using Chitosan as Steric Stabilizer. Eur. Polym. J. 2007, 43, 3471−3479. (18) Cruz-Silva, R.; Romero-García, J.; Angulo-Sánchez, J. L.; Ledezma-Pérez, A.; Arias-Marín, E.; Moggio, I.; Flores-Loyola, E. Template-Free Enzymatic Synthesis of Electrically Conducting Polyaniline Using Soybean Peroxidase. Eur. Polym. J. 2005, 41, 1129−1135. (19) Junker, K.; Gitsov, I.; Quade, N.; Walde, P. Preparation of Aqueous Polyaniline-Vesicle Suspensions with Class III Peroxidases. Comparison between Horseradish Peroxidase Isoenzyme C and Soybean Peroxidase. Chem. Pap. 2013, 67, 1028−1047. (20) Junker, K.; Kissner, R.; Rakvin, B.; Guo, Z.; Willeke, M.; Busato, S.; Weber, T.; Walde, P. The Use of Trametes Versicolor Laccase for the Polymerization of Aniline in the Presence of Vesicles as Templates. Enzyme Microb. Technol. 2014, 55, 72−84. (21) Kurisu, M.; Kissner, R.; Imai, M.; Peter, W. Application of an Enzymatic Cascade Reaction for the Synthesis of the Emeraldine Salt Form of Polyaniline. Chem. Pap. 2021, 75, 5071−5085. (22) Gizdavic-Nikolaidis, M.; Travas-Sejdic, J.; Kilmartin, P. A.; Bowmaker, G. A.; Cooney, R. P. Evaluation of Antioxidant Activity of Aniline and Polyaniline. Curr. Appl. Phys. 2004, 4, 343−346. (23) Stejskal, J.; Kratochvíl, P.; Radhakrishnan, N. Polyaniline Dispersions 2. UV-Vis Absorption Spectra. Synth. Met. 1993, 61, 225−231. (24) Georgiev, Y. N.; Paulsen, B. S.; Kiyohara, H.; Ciz, M.; Ognyanov, M. H.; Vasicek, O.; Rise, F.; Denev, P. N.; Yamada, H.; Lojek, A.; Kussovski, V.; Barsett, H.; Krastanov, A. I.; Yanakieva, I. Z.; Kratchanova, M. G. The Common Lavender (Lavandula Angustifolia Mill.) Pectic Polysaccharides Modulate Phagocytic Leukocytes and Intestinal Peyer’s Patch Cells. Carbohydr. Polym. 2017, 174, 948−959. (25) Vasicek, O.; Lojek, A.; Jancinova, V.; Nosal, R.; Ciz, M. Role of Histamine Receptors in the Effects of Histamine on the Production of Reactive Oxygen Species by Whole Blood Phagocytes. Life Sci. 2014, 100, 67−72. (26) Vašíček, O.; Lojek, A.; Číž, M. Serotonin and Its Metabolites Reduce Oxidative Stress in Murine RAW264.7 Macrophages and Prevent Inflammation. J. Physiol. Biochem. 2020, 76, 49−60. (27) Vasicek, O.; Rubanova, D.; Chytkova, B.; Kubala, L. Natural Pseurotins Inhibit Proliferation and Inflammatory Responses through the Inactivation of STAT Signaling Pathways in Macrophages. Food Chem. Toxicol. 2020, 141, No. 111348. (28) Stejskal, J.; Kratochvíl, P.; Gospodinova, N.; Terlemezyan, L.; Mokreva, P. Polyaniline Dispersions: Preparation of Spherical Particles and Their Light-Scattering Characterization. Polymer 1992, 33, 4857−4858. (29) Banci, L. Structural Properties of Peroxidases. J. Biotechnol. 1997, 53, 253−263. (30) Li, Y.; Bober, P.; Apaydin, D. H.; Syrový, T.; Sariciftci, N. S.; Hromádková, J.; Sapurina, I.; Trchová, M.; Stejskal, J. Colloids of Polypyrrole Nanotubes/Nanorods: A Promising Conducting Ink. Synth. Met. 2016, 221, 67−74. (31) Zare, E. N.; Lakouraj, M. M. Biodegradable Polyaniline/Dextrin Conductive Nanocomposites: Synthesis, Characterization, and Study of Antioxidant Activity and Sorption of Heavy Metal Ions. Iran. Polym. J. 2014, 23, 257−266. (32) Karimi-Soflou, R.; Nejati, S.; Karkhaneh, A. Electroactive and Antioxidant Injectable In-Situ Forming Hydrogels with Tunable Properties by Polyethylenimine and Polyaniline for Nerve Tissue Engineering. Colloids Surf., B 2021, 199, No. 111565. (33) Sapurina, I. Y.; Shishov, M. A. Oxidative Polymerization of Aniline: Molecular Synthesis of Polyaniline and the Formation of Supramolecular Structures, IntechOpen, 2012. (34) Alexandre, N.; Ribeiro, J.; Gärtner, A.; Pereira, T.; Amorim, I.; Fragoso, J.; Lopes, A.; Fernandes, J.; Costa, E.; Santos-Silva, A.; Rodrigues, M.; Santos, J. D.; Maurício, A. C.; Luís, A. L. Biocompatibility and Hemocompatibility of Polyvinyl Alcohol Hydrogel Used for Vascular Grafting–In Vitro and in Vivo Studies. J. Biomed. Mater. Res., Part A 2014, 102, 4262−4275. (35) Alhomrany, R.; Zhang, C.; Chou, L. Cytotoxic Effect of Chitosan Nanoparticles on Normal Human Dental Pulp Cells. Nanosci. Nanotechnol. 2019, 3, 940. (36) Zaki, S. S. O.; Ibrahim, M. N.; Katas, H. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells. J. Nanotechnol. 2015, 2015, No. 919658.
utb.fulltext.sponsorship This work was supported by the Czech Science Foundation (20-28732S) and by the Ministry of Education, Youth and Sports of the Czech Republic DKRVO (RP/CPS/2022/001). D.J., S.K., and E.K. also appreciate support of the Internal Grants of TBU in Zlín IGA/CPS/2022/001 funded from the resources of specific academic research. The article was supported within the project OP RDE Junior Grants of TBU in Zlín, Reg. No. CZ.02.2.69/0.0/0.0/19_073/0016941. O.V. also partially received support from European Structural and Investment Funds, Operational Program Research, Development and Education “Preclinical Progression of New Organic Compounds with Targeted Biological Activity” (Preclinprogress) CZ.02.1.01/0.0/0.0/16_025/0007381. The authors would like to thank Jan Vajd’ák for microbiological assessment.
utb.wos.affiliation [Jasenska, Daniela; Kasparkova, Vera; Munster, Lukas; Minarik, Antonin; Kacerova, Simona; Korabkova, Eva; Vicha, Jan; Capakova, Zdenka; Lehocky, Marian; Skopalova, Katerina; Humpolicek, Petr] Tomas Bata Univ Zlin, Ctr Polymer Syst, Zlin 76001, Czech Republic; [Jasenska, Daniela; Kasparkova, Vera; Munster, Lukas; Minarik, Antonin; Kacerova, Simona; Korabkova, Eva; Urbankova, Lucie; Vicha, Jan; Capakova, Zdenka; Lehocky, Marian; Skopalova, Katerina; Humpolicek, Petr] Tomas Bata Univ Zlin, Fac Technol, Zlin 76001, Czech Republic; [Falleta, Ermelinda; Della Pina, Cristina] Univ Milan, Dept Chem, I-20133 Milan, Italy; [Vasicek, Ondrej] Czech Acad Sci, Inst Biophys, Brno 61265, Czech Republic; [Vasicek, Ondrej] Masaryk Univ, Inst Expt Biol, Fac Sci, Brno 62500, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín760 01 Zlín, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín ,nám. T. G. Masaryka 5555760 01 Zlín, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 612 65, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic; Department of Chemistry, University of Milan, Via C. Golgi 19, Milan, 20133, Italy
utb.fulltext.projects 20-28732S
utb.fulltext.projects DKRVO (RP/CPS/2022/001)
utb.fulltext.projects IGA/CPS/2022/001
utb.fulltext.projects CZ.02.2.69/0.0/0.0/19_073/0016941
utb.fulltext.projects CZ.02.1.01/0.0/0.0/16_025/0007381
utb.fulltext.faculty University Institute
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Centre of Polymer Systems
utb.identifier.jel -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam