Publikace UTB
Repozitář publikační činnosti UTB

Low temperature 2D GaN growth on Si(111) 7 x 7 assisted by hyperthermal nitrogen ions

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Low temperature 2D GaN growth on Si(111) 7 x 7 assisted by hyperthermal nitrogen ions en
dc.contributor.author Maniš, Jaroslav
dc.contributor.author Mach, Jindřich
dc.contributor.author Bartošík, Miroslav
dc.contributor.author Šamořil, Tomáš
dc.contributor.author Horák, Michal
dc.contributor.author Čalkovský, Vojtěch
dc.contributor.author Nezval, David
dc.contributor.author Kachtik, Lukáš
dc.contributor.author Konečný, Martin
dc.contributor.author Šikola, Tomáš
dc.relation.ispartof Nanoscale Advances
dc.identifier.issn 2516-0230 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 4
dc.citation.spage 3549
dc.citation.epage 3556
dc.type article
dc.language.iso en
dc.publisher Royal Society of Chemistry
dc.identifier.doi 10.1039/d2na00175f
dc.relation.uri https://pubs.rsc.org/en/content/articlelanding/2022/NA/D2NA00175F
dc.description.abstract As the characteristic dimensions of modern top-down devices are getting smaller, such devices reach their operational limits imposed by quantum mechanics. Thus, two-dimensional (2D) structures appear to be one of the best solutions to meet the ultimate challenges of modern optoelectronic and spintronic applications. The representative of III-V semiconductors, gallium nitride (GaN), is a great candidate for UV and high-power applications at a nanoscale level. We propose a new way of fabrication of 2D GaN on the Si(111) 7 x 7 surface using post-nitridation of Ga droplets by hyperthermal (E = 50 eV) nitrogen ions at low substrate temperatures (T < 220 degrees C). The deposition of Ga droplets and their post-nitridation are carried out using an effusion cell and a special atom/ion beam source developed by our group, respectively. This low-temperature droplet epitaxy (LTDE) approach provides well-defined ultra-high vacuum growth conditions during the whole fabrication process resulting in unique 2D GaN nanostructures. A sharp interface between the GaN nanostructures and the silicon substrate together with a suitable elemental composition of nanostructures was confirmed by TEM. In addition, SEM, X-ray photoelectron spectroscopy (XPS), AFM and Auger microanalysis were successful in enabling a detailed characterization of the fabricated GaN nanostructures. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1011083
utb.identifier.obdid 43883950
utb.identifier.scopus 2-s2.0-85135510985
utb.identifier.wok 000834531700001
utb.source J-wok
dc.date.accessioned 2022-08-17T13:17:25Z
dc.date.available 2022-08-17T13:17:25Z
dc.description.sponsorship Czech Science Foundation [20-28573S]; Ministry of Education, Youth and Sports of the Czech Republic (CzechNanoLab Research Infrastructure) [LM2018110]; European Commission [810626 - SINNCE, TH71020004]; BUT [FSI-S-20-6485]
dc.description.sponsorship European Commission, EC: 71020004, 810626; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: LM2018110; Grantová Agentura České Republiky, GA ČR: 20-28573S; Vysoké Učení Technické v Brně, BUT: FSI-S-20-6485
dc.rights Attribution-NonCommercial 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc/3.0/
dc.rights.access openAccess
utb.ou Department of Physics and Materials Engineering
utb.contributor.internalauthor Bartošík, Miroslav
utb.fulltext.affiliation Jaroslav Maniš,ab Jindřich Mach, http://orcid.org/0000-0003-1896-0715 *ab Miroslav Bartošík,abc Tomáš Šamořil,b Michal Horák, http://orcid.org/0000-0001-6503-8294 b Vojtěch Čalkovský,b David Nezval,b Lukáš Kachtik,a Martin Konečný ab and Tomáš Šikola ab a CEITEC BUT, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic. E-mail: mach@fme.vutbr.cz b Institute of Physical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic c Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01, Czech Republic
utb.fulltext.dates Received 22nd March 2022 Accepted 15th July 2022 Published on 19 July 2022
utb.fulltext.references 1 N. Sanders, D. Bayerl, G. Shi, K. A. Mengle and E. Kioupakis, Electronic and Optical Properties of Two-Dimensional GaN from First-Principles, Nano Lett., 2017, 17(12), 7345–7349. 2 C. Feng, H. Qin, D. Yang and G. Zhang, First-principles investigation of the adsorption behaviors of CH2O on BN, AlN, GaN, InN, BP, and P monolayers, Materials, 2019, 12(4), 676. 3 C. Pashartis and O. Rubel, Alloying strategy for twodimensional GaN optical emitters, Phys. Rev. B, 2017, 96(15), 1–6. 4 S. Pimputkar, J. S. Speck, S. P. Denbaars and S. Nakamura, Prospects for LED lighting, Nat. Photonics, 2009, 3(4), 180–182. 5 M. Chhowalla, D. Jena and H. Zhang, Two-dimensional semiconductors for transistors, Nat. Rev. Mater., 2016, 1(16052), 1–15. 6 Q. Hao, H. Zhao and Y. Xiao, A hybrid simulation technique for electrothermal studies of two-dimensional GaN-on-SiC high electron mobility transistors, J. Appl. Phys., 2017, 121(20), 204501. 7 X. Zhang, L. Jin, X. Dai, G. Chen and G. Liu, TwoDimensional GaN: An Excellent Electrode Material Providing Fast Ion Diffusion and High Storage Capacity for Li-Ion and Na-Ion Batteries, ACS Appl. Mater. Interfaces, 2018, 10(45), 38978–38984. 8 F. Hussain, et al., Enhanced ferromagnetic properties of Cu doped two-dimensional GaN monolayer, Int. J. Mod. Phys. C, 2015, 26(1), 1–8. 9 N. Alaal and I. S. Roqan, Tuning the Electronic Properties of Hexagonal Two-Dimensional GaN Monolayers via Doping for Enhanced Optoelectronic Applications, ACS Appl. Nano Mater., 2019, 2(1), 202–213. 10 R. González, W. López-Pérez, A. González-García, M. G. Moreno-Armenta and R. González-Hernández, Vacancy charged defects in two-dimensional GaN, Appl.Surf. Sci., 2018, 433, 1049–1055. 11 L. Tong, et al., Anisotropic carrier mobility in buckled twodimensional GaN, Phys. Chem. Chem. Phys., 2017, 19(34), 23492–23496. 12 Z. Y. Al Balushi, et al., Two-dimensional gallium nitride realized via graphene encapsulation, Nat. Mater., 2016, 15(11), 1166–1171. 13 W. Wang, Y. Li, Y. Zheng, X. Li, L. Huang and G. Li, Lattice Structure and Bandgap Control of 2D GaN Grown on Graphene/Si Heterostructures, Small, 2019, 15(14), 1–8. 14 Y. Chen, et al., Growth of 2D GaN Single Crystals on Liquid Metals, J. Am. Chem. Soc., 2018, 140(48), 16392–16395. 15 N. Koguchi and K. Ishige, Growth of GaAs epitaxial microcrystals on an S-terminated GaAs substrate by successive irradiation of Ga and as molecular beams, Jpn. J. Appl. Phys., Part 1, 1993, 32(5), 2052–2058. 16 J. Stangl, V. Holý and G. Bauer, Structural properties of selforganized semiconductor nanostructures, Rev. Mod. Phys., 2004, 76(3), 725–783. 17 S. Bietti, C. Somaschini and S. Sanguinetti, Crystallization kinetics of Ga metallic nano-droplets under As flux, Nanotechnology, 2013, 24(20), 205603. 18 J. Mach, et al., An ultra-low energy (30-200eV) ion-atomic beam source for ion-beam-assisted deposition in ultrahigh vacuum, Rev. Sci. Instrum., 2011, 82(8), 083302. 19 J. Mach, et al., Optimization of ion-atomic beam source for deposition of GaN ultrathin films, Rev. Sci. Instrum., 2014, 85(8), 083302. 20 J. W. Gerlach, T. Ivanov, L. Neumann, T. Höche, D. Hirsch and B. Rauschenbach, Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets, J. Appl. Phys., 2012, 111(11), 113521. 21 J. Mach, et al., Low temperature selective growth of GaN single crystals on pre-patterned Si substrates, Appl. Surf. Sci., 2019, 497, 143705. 22 M. Kolíbal, T. Cechal, E. Brandejsová, J. Čechal and T. Šikola, Self-limiting cyclic growth of gallium droplets on Si(111), Nanotechnology, 2008, 19(47), 475606. 23 M. Khoury, O. Tottereau, G. Feuillet, P. Vennéguès and J. Zúñiga-Pérez, Evolution and prevention of meltback etching: case study of semipolar GaN growth on patterned silicon substrates, J. Appl. Phys., 2017, 122(10), 1–7. 24 C. G. Van de Walle, Effects of impurities on the lattice parameters of GaN, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 68(16), 1–5. 25 Y. Gao and S. Okada, Energetics and electronic structures of thin films and heterostructures of a hexagonal GaN sheet, Jpn. J. Appl. Phys., 2017, 56(6), 065201. 26 A. Onen, D. Kecik, E. Durgun and S. Ciraci, GaN: from threeto two-dimensional single-layer crystal and its multilayer van der Waals solids, Phys. Rev. B, 2016, 93(8), 1–11. 27 A. Onen, D. Kecik, E. Durgun and S. Ciraci, Onset of vertical bonds in new GaN multilayers: beyond van der Waals solids, Nanoscale, 2018, 10(46), 21842–21850. 28 M. Leszczynski, et al., Lattice parameters of gallium nitride, Appl. Phys. Lett., 1996, 69(1), 73–75. 29 V. Darakchieva, P. P. Paskov, T. Paskova, E. Valcheva, B. Monemar and M. Heuken, Lattice parameters of GaN layers grown on a-plane sapphire: effect of in-plane strain anisotropy, Appl. Phys. Lett., 2003, 82(5), 703–705. 30 C. Yelgel, First-principles modeling of GaN/MoSe2 van der Waals heterobilayer, Turk. J. Phys., 2017, 41(5), 463–468.
utb.fulltext.sponsorship We acknowledge the support by the Czech Science Foundation (grant no. 20-28573S), European Commission (H2020-Twininning project no. 810626 – SINNCE, M-ERA NET HYSUCAP/TACR-TH71020004), BUT – specific research no. FSI-S-20-6485, and Ministry of Education, Youth and Sports of the Czech Republic (CzechNanoLab Research Infrastructure – LM2018110).
utb.wos.affiliation [Manis, Jaroslav; Mach, Jindrich; Bartosik, Miroslav; Kachtik, Lukas; Konecny, Martin; Sikola, Tomas] Brno Univ Technol, CEITEC BUT, Tech 3058-10, Brno 61600, Czech Republic; [Manis, Jaroslav; Mach, Jindrich; Bartosik, Miroslav; Samoril, Tomas; Horak, Michal; Calkovsky, Vojtech; Nezval, David; Kachtik, Lukas; Konecny, Martin; Sikola, Tomas] Brno Univ Technol, Inst Phys Engn, Tech 2, Brno 61669, Czech Republic; [Bartosik, Miroslav] Tomas Bata Univ Zlin, Fac Technol, Dept Phys & Mat Engn, Vavreckova 275, Zlin 76001, Czech Republic
utb.scopus.affiliation CEITEC BUT, Brno University of Technology, Technická 3058/10, Brno, 616, Czech Republic; Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno, 616, Czech Republic; Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275760 01, Czech Republic
utb.fulltext.projects 20-28573S
utb.fulltext.projects 810626
utb.fulltext.projects TH71020004
utb.fulltext.projects FSI-S-20-6485
utb.fulltext.projects LM2018110
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Department of Physics and Materials Engineering
utb.identifier.jel -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial 3.0 Unported Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial 3.0 Unported