Publikace UTB
Repozitář publikační činnosti UTB

Towards a correction factors-based software productivity using ensemble approach for early software development effort estimation

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Towards a correction factors-based software productivity using ensemble approach for early software development effort estimation en
dc.contributor.author Ho, Le Thi Kim Nhung
dc.contributor.author Vo Van, Hai
dc.contributor.author Jašek, Roman
dc.relation.ispartof Lecture Notes in Networks and Systems
dc.identifier.issn 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 2367-3389 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-03-109069-1
dc.date.issued 2022
utb.relation.volume 501
dc.citation.spage 413
dc.citation.epage 425
dc.event.title 11th Computer Science On-line Conference, CSOC 2022
dc.event.location online
dc.event.sdate 2022-04-26
dc.event.edate 2022-04-26
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-031-09070-7_35
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-031-09070-7_35
dc.subject software development effort estimation en
dc.subject optimizing correction factors en
dc.subject software productivity en
dc.description.abstract Accuracy of effort estimation is one of the necessary conditions for efficiently managing software development projects. Since the information available in the early stages of software development is insufficient, software sizing metrics are considered critical factors for effort estimation. However, there is no consistent method for converting software sizing into the corresponding effort. Previous estimation methods have not considered software productivity a critical factor in estimating effort based on software sizing. This paper proposes a software productivity model based on correction factors in the Optimizing Correction Factors method through an ensemble construction mechanism of three popular machine learning techniques. The results show that using the proposed software productivity minimizes the estimation error of the methods compared to using fixed productivity metrics. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011086
utb.identifier.obdid 43884040
utb.identifier.scopus 2-s2.0-85135068453
utb.identifier.wok 000893645700035
utb.source d-scopus
dc.date.accessioned 2022-08-17T13:17:25Z
dc.date.available 2022-08-17T13:17:25Z
dc.description.sponsorship IGA/CebiaTech/2022/001
dc.description.sponsorship Faculty of Applied Informatics, Tomas Bata University in Zlin [IGA/CebiaTech/2022/001]
utb.contributor.internalauthor Ho, Le Thi Kim Nhung
utb.contributor.internalauthor Vo Van, Hai
utb.contributor.internalauthor Jašek, Roman
utb.fulltext.sponsorship This work was supported by the Faculty of Applied Informatics, Tomas Bata University in Zlín, under Project IGA/CebiaTech/2022/001.
utb.wos.affiliation [Nhung, Ho Le Thi Kim; Hai, Vo Van; Jasek, Roman] Tomas Bata Univ Zlin, Fac Appl Informat, Nad Stranemi 4511, Zlin 76001, Czech Republic
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin, 76001, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2022/001
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam