Kontaktujte nás | Jazyk: čeština English
dc.title | Strengthening resilience in the energy critical infrastructure: Methodological overview | en |
dc.contributor.author | Řehák, David | |
dc.contributor.author | Slivková, Simona | |
dc.contributor.author | Janečková, Heidi | |
dc.contributor.author | Štuberová, Dominika | |
dc.contributor.author | Hromada, Martin | |
dc.relation.ispartof | Energies | |
dc.identifier.issn | 1996-1073 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 15 | |
utb.relation.issue | 14 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI | |
dc.identifier.doi | 10.3390/en15145276 | |
dc.relation.uri | https://www.mdpi.com/1996-1073/15/14/5276 | |
dc.relation.uri | https://www.mdpi.com/1996-1073/15/14/5276/pdf?version=1658375803 | |
dc.subject | critical infrastructure | en |
dc.subject | energy | en |
dc.subject | strengthening resilience | en |
dc.subject | resilience assessment | en |
dc.subject | approaches and methods | en |
dc.description.abstract | As the number of threats and the severity of their impact increases, an ever greater emphasis is being placed on the protection of critical infrastructure. Thus, the issue of resilience, or its assessment and strengthening, is increasingly coming to the fore. The resilience assessment of critical infrastructure, especially in the energy sector, has received considerable attention due to the high level of interest in this issue. However, the issue of strengthening resilience poses a significant challenge not only in the energy sector but also in the entire critical infrastructure system. Despite the great importance of this area, there is not a large number of authors moving in this direction and paying attention to resilience-strengthening tools. For this reason, the aim of this article is to provide the reader with a comprehensive methodological overview of resilience strengthening in the critical energy infrastructure sector. This article also provides an overview of internal and external tools suitable for strengthening resilience and presents a possible procedure for their application to energy critical infrastructure elements. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011096 | |
utb.identifier.obdid | 43884049 | |
utb.identifier.scopus | 2-s2.0-85136379232 | |
utb.identifier.wok | 000832114200001 | |
utb.source | J-wok | |
dc.date.accessioned | 2022-08-17T13:17:26Z | |
dc.date.available | 2022-08-17T13:17:26Z | |
dc.description.sponsorship | Ministry of the Interior of the Czech Republic [VI20192022151]; VSB-Technical University of Ostrava [SP2022/70] | |
dc.description.sponsorship | Ministerstvo Vnitra České Republiky: SP2022/70, VI20192022151 | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.contributor.internalauthor | Hromada, Martin | |
utb.fulltext.affiliation | David Rehak 1,* https://orcid.org/0000-0002-4617-0553 , Simona Slivkova 1 https://orcid.org/0000-0002-4123-6146 , Heidi Janeckova 1, Dominika Stuberova 1 and Martin Hromada 2 1 Faculty of Safety Engineering, VSB-Technical University of Ostrava, Lumirova 13/630, 700 30 Ostrava, Czech Republic; simona.slivkova@vsb.cz (S.S.); heidi.janeckova@vsb.cz (H.J.); dominika.stuberova@vsb.cz (D.S.) 2 Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, 760 05 Zlin, Czech Republic; hromada@utb.cz * Correspondence: david.rehak@vsb.cz; Tel.: +420-597322816 | |
utb.fulltext.dates | Received: 27 June 2022 Revised: 15 July 2022 Accepted: 18 July 2022 Published: 21 July 2022 | |
utb.fulltext.references | 1. Council Directive 2008/114/EC of 8 December 2008 on the Identification and Designation of European Critical Infrastructures and the Assessment of the Need to Improve Their Protection; Council of the European Union: Brussels, Belgium, 2008. 2. Rehak, D.; Senovsky, P.; Hromada, M.; Lovecek, T.; Novotny, P. Cascading Impact Assessment in a Critical Infrastructure System. Int. J. Crit. Infrastruct. Prot. 2018, 22, 125–138. [Google Scholar] [CrossRef] 3. Presidential Policy Directive—Critical Infrastructure Security and Resilience (PPD-21. 2013); The White House: Washington, DC, USA, 2013. 4. Lauge, A.; Hernantes, J.; Sarriegi, J.M. Critical infrastructure dependencies: A holistic, dynamic and quantitative approach. Int. J. Crit. Infrastruct. Prot. 2015, 8, 16–23. [Google Scholar] [CrossRef] 5. Xiao, D.; Chen, H.; Wei, C.; Bai, X. Statistical Measure for Risk-Seeking Stochastic Wind Power Offering Strategies in Electricity Markets. J. Mod. Power Syst. Clean Energy, 2021; in press. [Google Scholar] [CrossRef] 6. Araújo, K.; Shropshire, D. A Meta-Level Framework for Evaluating Resilience in Net-Zero Carbon Power Systems with Extreme Weather Events in the United States. Energies 2021, 14, 4243. [Google Scholar] [CrossRef] 7. Critical Infrastructure Resilience Final Report and Recommendations; National Infrastructure Advisory Council, U.S. Department of Homeland Security: Washington, DC, USA, 2009. 8. Brown, C.; Seville, E.; Vargo, J. Measuring the organizational resilience of critical infrastructure providers: A New Zealand case study. Int. J. Crit. Infrastruct. Prot. 2017, 18, 37–49. [Google Scholar] [CrossRef] 9. Lee, A.; Vargo, J.; Seville, E. Developing a tool to measure and compare organizations resilience. Nat. Hazards Rev. 2013, 14, 29–41. [Google Scholar] [CrossRef] 10. Van der Merwe, S.E.; Biggs, R.; Preiser, R. Sensemaking as an approach for resilience assessment in an Essential Service Organization. Environ. Syst. Decis. 2020, 40, 84–106. [Google Scholar] [CrossRef] 11. Zhou, L.; Chen, Z. Measuring the Performance of Airport Resilience to Severe Weather Events. Transp. Res. Part D Transp. Environ. 2020, 83, 102362. [Google Scholar] [CrossRef] 12. Wei, D.; Chen, Z.; Rose, A. Evaluating the role of resilience in reducing economic losses from disasters: A multi-regional analysis of a seaport disruption. Reg. Sci. Assoc. Int. 2020, 99, 1691–1722. [Google Scholar] [CrossRef] 13. Jovanovic, A.S.; Chakravarty, S.; Jelic, M. Resilience and Situational Awareness in Critical Infrastructure Protection: An Indicator-Based Approach. In Issues on Risk Analysis for Critical Infrastructure Protection; Rosato, V., Pietro, A.D., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef] 14. Hoisieni, S.; Barker, K.; Ramirez-Marquez, J.E. A Review of Definitions and Measures of System Resilience. Reliab. Eng. Syst. Saf. 2016, 145, 47–61. [Google Scholar] [CrossRef] 15. Bertocchi, G.; Bologna, S.; Carducci, G.; Carrozzi, L.; Cavallini, S.; Lazari, A.; Oliva, G.; Traballesi, A. Guidelines for Critical Infrastructure Resilience Evaluation; Italian Association of Critical Infrastructures’ Experts: Rome, Italy, 2016. [Google Scholar] [CrossRef] 16. Nan, C.; Sansavini, G.A. Quantitative Method for Assessing Resilience of Interdependent Infrastructures. Reliab. Eng. Syst. Saf. 2017, 157, 35–53. [Google Scholar] [CrossRef] 17. Johansen, C.; Tien, I. Probabilistic multi-scale modelling of interdependencies between critical infrastructure systems for resilience. Sustain. Resilient Infrastruct. 2018, 3, 1–15. [Google Scholar] [CrossRef] 18. Rehak, D.; Senovsky, P.; Hromada, M.; Lovecek, T. Complex approach to assessing resilience of critical infrastructure elements. Int. J. Crit. Infrastruct. Prot. 2019, 25, 125–138. [Google Scholar] [CrossRef] 19. Ciapessoni, E.; Cirio, D.; Pitto, A.; Sforna, M. A risk-based resilience assessment tool to anticipate critical system conditions in case of natural threats. In Proceedings of the Milan PowerTech (IEEE 2019), Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef] 20. Simonovic, S.P.; Arunkumar, R. Comparison of static and dynamic resilience for a multipurpose reservoir operation. Water Resour. Res. 2016, 52, 8630–8649. [Google Scholar] [CrossRef] 21. Ouyang, M.; Liu, C.; Xu, M. Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions. Reliab. Eng. Syst. Saf. 2019, 190, 106506. [Google Scholar] [CrossRef] 22. Eljaoued, W.; Yahia, N.B.; Saoud, N.B.B. A Qualitative-Quantitative Resilience Assessment Approach for Socio-technical Systems. Procedia Comput. Sci. 2020, 176, 2625–2634. [Google Scholar] [CrossRef] 23. Kammouh, O.; Gardoni, P.; Cimellaro, G.P. Probabilistic Framework to Evaluate the Resilience of Engineering Systems Using Bayesian and Dynamic Bayesian Networks. Reliab. Eng. Syst. Saf. 2020, 198, 106813. [Google Scholar] [CrossRef] 24. Rehak, D.; Hromada, M.; Onderkova, V.; Walker, N.; Fuggini, C. Dynamic robustness modelling of electricity critical infrastructure elementsas a part of energy security. Int. J. Crit. Infrastruct. Prot. 2022, 136, 107700. [Google Scholar] [CrossRef] 25. Labaka, L.; Hernantes, J.; Sarriegi, J.M. A Framework to Improve the Resilience of Critical Infrastructures. Int. J. Disaster Resil. Built Environ. 2015, 6, 409–423. [Google Scholar] [CrossRef] 26. Zimmerman, R.; Zhu, Q.; de Leon, F.; Guo, Z. Conceptual modelling framework to integrate resilient and interdependent infrastructure in extreme weather. J. Infrastruct. Syst. 2017, 23, 04017034. [Google Scholar] [CrossRef] 27. Haines, A. Resilience of Rail Infrastructure: Update Report to the Secretary of State for Transport Following the Derailment at Carmont, near Stonehaven; Network Rail: London, UK, 2021. [Google Scholar] 28. Reeves, S.; Winter, M.; Leal, D.; Hewitt, A. Rail: An Industry Guide to Enhancing Resilience; The Resilience Shift and TRL: London, UK, 2019. [Google Scholar] 29. Walker, B.; Nilakant, V.; Heugten, K.; Kuntz, J.; Malinen, S.; Naswall, K. Becoming Agile: A Guide to Building Adaptive Resilience; The University of Canterbury: Christchurch, New Zealand, 2019. [Google Scholar] 30. Tonn, G.; Erwann, M.K.; Kunreuther, H. Insurance, Economic Incentives and Other Policy Tools for Strengthening Critical Infrastructure Resilience: 20 Proposals for Action; Wharton School of the University of Pennsylvania: Philadelphia, PA, USA, 2016. [Google Scholar] 31. Rahman, M.; Ghosh, S. Increasing Resilience by the Participatory Planning Approach. In Proceedings of the Construction Research Congress 2016; Juan, S., Rico, P., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 1538–1545. [Google Scholar] [CrossRef] 32. Silla, A.; Jaroszweski, D.; Quinn, A.; Baker, C.; Hooper, E.; Kochsiek, J.; Schultz, S.; Sila, A. Guidebook for Enhancing Resilience of European Railway Transport in Extreme Weather Events, 1st ed.; European Commission EC: Brussels, Belgium, 2014. [Google Scholar] 33. Bucci, S.; Inserra, D.; Lesser, J.; Mayer, M.; Spencer, J.; Slattery, B.; Tubb, K. After Hurricane Sandy: Time to Learn and Implement the Lessons in Preparedness, Response, and Resilience; The Heritage Foundation Emergency Preparedness Working Group: Washington, DC, USA, 2013. [Google Scholar] 34. Proposal for a Directive of the European Parliament and of the Council on the Resilience of Critical Entities; COM/2020/829 Final; European Commission: Brussels, Belgium, 2020. 35. Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] 36. Davoudi, S.; Porter, L. Applying the Resilience Perspective to Planning: Critical Thoughts from Theory and Practice. Plan. Theory Pract. 2012, 13, 299–333. [Google Scholar] [CrossRef] 37. Graham, S. Disrupted Cities: When Infrastructure Fails; Routledge: New York, NY, USA, 2009. [Google Scholar] [CrossRef] 38. Graham, S.; Marvin, S. Splintering Urbanism: Networked Infrastructures, Technological Mobilities and the Urban Condition; Routledge: London, UK, 2001. [Google Scholar] 39. Rehak, D.; Flynnova, L.; Slivkova, S. Concept of Resistance in the Railway Infrastructure Elements Protection. In TRANSBALTICA XII: Transportation Science and Technology; Prentkovskis, O., Yatskiv, I., Skačkauskas, P., Junevičius, R., Maruschak, P., Eds.; Springer: Cham, Switzerland, 2021; pp. 419–428. [Google Scholar] [CrossRef] 40. Rehak, D.; Senovsky, P.; Slivkova, S. Resilience of Critical Infrastructure Elements and its Main Factors. Systems 2018, 6, 21. [Google Scholar] [CrossRef] 41. Rehak, D. Assessing and strengthening organisational resilience in a critical infrastructure system: Case study of the Slovak Republic. Saf. Sci. 2020, 123, 104573. [Google Scholar] [CrossRef] 42. Good Governance for Critical Infrastructure Resilience; OECD Publishing: Paris, France, 2019. [CrossRef] 43. Anticipate, React, Recover: Resilient Infrastructure Systems; National Infrastructure Commission: London, UK, 2020. 44. Understanding Transportation Resilience: A 2016–2018 Roadmap, for Security, Emergency Management, and Infrastructure Protection in Transportation Resilience; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2017. 45. Linnenluecke, M.K. Resilience in business and management research: A review of influential publications and a research agenda. Int. J. Manag. Rev. 2017, 19, 4–30. [Google Scholar] [CrossRef] 46. Denyer, D. Organizational Resilience: A Summary of Academic Evidence, Business Insights and New Thinking; BSI and Cranfield School of Management: Bedford, UK, 2017. [Google Scholar] 47. ISO 22316; Security and Resilience—Organizational Resilience—Principles and Attributes. International Organization for Standardization: Geneva, Switzerland, 2017. 48. Bridge, J.; Dodds, J.C. Managerial Decision Making; Routledge: London, UK, 2018. [Google Scholar] [CrossRef] 49. IEC 62502; Analysis Techniques for Dependability—Event Tree Analysis (ETA). International Electrotechnical Commission: Geneva, Switzerland, 2010. 50. IEC 61025; Fault Tree Analysis (FTA). International Electrotechnical Commission: Geneva, Switzerland, 2006. 51. IEC 61882; Hazard and Operability Studies (HAZOP Studies)—Application Guide. International Electrotechnical Commission: Geneva, Switzerland, 2016. 52. Armstrong, M. Armstrong’s Handbook of Human Resource Management Practice, 3rd ed.; Kogan Page: London, UK, 2014. [Google Scholar] 53. Ratnawat, R.G.; Jha, P.C. Impact of Job Related Stress on Employee Performance: A Review and Research Agenda. IOSR J. Bus. Manag. 2014, 16, 1–6. [Google Scholar] [CrossRef] 54. EN 50126-1; Railway Applications—The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS)—Part 1: Generic RAMS Process. European Standard: Brussels, Belgium, 2017. 55. Robinson, C.P.; Woodard, J.B.; Varnado, S.G. Critical Infrastructure: Interlinked and Vulnerable. Issues Sci. Technol. 1998, 15, 61–68. [Google Scholar] 56. Tracht, K.; Goch, G.; Schuh, P.; Sorg, M.; Westerkamp, J.F. Failure probability prediction based on condition monitoring data of wind energy systems for spare parts supply. CIRP Ann. 2013, 62, 127–130. [Google Scholar] [CrossRef] 57. Lindenberger, D.; Bruckner, T.; Morrison, R.; Groscurth, H.M.; Kümmel, R. Modernization of local energy systems. Energy 2004, 29, 245–256. [Google Scholar] [CrossRef] 58. Kampova, K.; Lovecek, T.; Rehak, D. Quantitative Approach to Physical Protection Systems Assessment of Critical Infrastructure Elements: Use Case in the Slovak Republic. Int. J. Crit. Infrastruct. Prot. 2020, 30, 100376. [Google Scholar] [CrossRef] 59. ISO 31000; Risk Management—Guidelines. International Organization for Standardization: Geneva, Switzerland, 2018. 60. IEC 31010; Risk Management—Risk Assessment Techniques. International Electrotechnical Commission: Geneva, Switzerland, 2019. 61. Bugdol, M.; Jedynak, P. Integrated Management Systems; Springer: Cham, Switzerland, 2015; Available online: https://link.springer.com/book/10.1007/978-3-319-10028-9 (accessed on 13 June 2022). 62. Gibbert, M.; Hoegl, M.; Valikangas, L. Financial Resource Constraints and Innovation. J. Prod. Innov. Manag. 2014, 31, 197–201. [Google Scholar] [CrossRef] 63. Picard, P. Natural Disaster Insurance and the Equity-Efficiency Trade-Off. J. Risk Insur. 2008, 75, 17–38. [Google Scholar] [CrossRef] 64. IEA—International Energy Agency. Available online: https://www.iea.org/ (accessed on 13 June 2022). 65. Green Infrastructure in the Energy Sector; European Commission: Brussels, Belgium, 2014. 66. Sevcik, J.; Malus, M.; Svoboda, P. Large-scale industrial company alarm receiving centre modernization design. WSEAS Trans. Commun. 2014, 13, 587–595. [Google Scholar] | |
utb.fulltext.sponsorship | This research was funded by the Ministry of the Interior of the Czech Republic, grant number VI20192022151, and the VSB—Technical University of Ostrava, grant number SP2022/70. | |
utb.wos.affiliation | [Rehak, David; Slivkova, Simona; Janeckova, Heidi; Stuberova, Dominika] VSB Tech Univ Ostrava, Fac Safety Engn, Lumirova 13-630, Ostrava 70030, Czech Republic; [Hromada, Martin] Tomas Bata Univ Zlin, Fac Appl Informat, Nad Stranemi 4511, Zlin 76005, Czech Republic | |
utb.scopus.affiliation | Faculty of Safety Engineering, VSB-Technical University of Ostrava, Lumirova 13/630, Ostrava, 700 30, Czech Republic; Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin, 760 05, Czech Republic | |
utb.fulltext.projects | VI20192022151 | |
utb.fulltext.projects | SP2022/70 | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | - | |
utb.identifier.jel | - |