Publikace UTB
Repozitář publikační činnosti UTB

The adsorptive behaviour of electrospun hydrophobic polymers for optimized uptake of estrogenic sex hormones from aqueous media: kinetics, thermodynamics, and reusability study

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title The adsorptive behaviour of electrospun hydrophobic polymers for optimized uptake of estrogenic sex hormones from aqueous media: kinetics, thermodynamics, and reusability study en
dc.contributor.author Yasir, Muhammad
dc.contributor.author Asabuwa Ngwabebhoh, Fahanwi
dc.contributor.author Šopík, Tomáš
dc.contributor.author Lovecká, Lenka
dc.contributor.author Kimmer, Dušan
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Journal of Chemical Technology and Biotechnology
dc.identifier.issn 0268-2575 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1097-4660 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 97
utb.relation.issue 12
dc.citation.spage 3317
dc.citation.epage 3332
dc.type article
dc.language.iso en
dc.publisher John Wiley and Sons Ltd
dc.identifier.doi 10.1002/jctb.7191
dc.relation.uri https://onlinelibrary.wiley.com/doi/10.1002/jctb.7191
dc.relation.uri https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jctb.7191?download=true
dc.subject electrospun nanofibers en
dc.subject kinetics en
dc.subject estrogenic hormones en
dc.subject adsorption mechanism en
dc.subject wastewater treatment en
dc.description.abstract Background: Estrogenic hormones as micropollutants in water systems cause severe adverse effects on human health and marine life, leading to fatal diseases, such as breast, ovarian, and prostate cancer. Electrospun polymers have proven high stability and impressive performance in adsorption removal. In this study, electrospun polysulfone (PSU), polyvinylidene fluoride, and polylactic acid were prepared and characterized using scanning electron microscope (SEM), fourier-transform intrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer Emmett Teller (BET), surface area measurement X-Ray diffraction (XRD), and porometry. Results: Nanofibers possess a mean fiber diameter of 149–183 nm and a specific surface area of 1.6–6.3 m2/g. The adsorption efficiency of the simultaneous removal of estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2) in a mixed concentration was investigated using high performace liquid chromatography (HPLC). The results indicate that spun PSU fibers exhibited the highest removal of all four estrogens, with a maximum removal efficiency of 71.2%, 65.9%, 56.9%, and 36.1% and adsorption capacity of 0.508, 0.703, 0.550, and 0.354 mg/g for E1, EE2, E2, and E3, respectively. Additionally, the adsorption was optimised by varying parameters, such as concentration of adsorbate, pH, adsorbent dosage, and temperature, to statistically analyse one-way variance using ANOVA. The pseudo-second-order is best fitted for E1, EE2, and E2, while the pseudo-first-order is best for E3. The Langmuir–Freundlich isothermal model was most suitable for evaluation, and the thermodynamics depicted the adsorption to be exothermic and spontaneous. Conclusion: The results indicate that spun PSU can be an efficient adsorbent in the simultaneous elimination of estrogens from wastewater and it exhibits a high regeneration performance of over 60% after six adsorption–desorption cycles. © 2022 Society of Chemical Industry (SCI). © 2022 Society of Chemical Industry (SCI). en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011101
utb.identifier.obdid 43884282
utb.identifier.scopus 2-s2.0-85135259906
utb.identifier.wok 000835851600001
utb.identifier.coden JCTBD
utb.source j-scopus
dc.date.accessioned 2022-08-17T13:17:26Z
dc.date.available 2022-08-17T13:17:26Z
dc.description.sponsorship IGA/CPS/2022/003; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2022/002, RP/CPS/2022/005
dc.description.sponsorship Ministry of Education, Youth, and Sports of the Czech Republic [RP/CPS/2022/002, RP/CPS/2022/005]; Internal Grant Agency of TBU in Zlin [IGA/CPS/2022/003]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Yasir, Muhammad
utb.contributor.internalauthor Asabuwa Ngwabebhoh, Fahanwi
utb.contributor.internalauthor Šopík, Tomáš
utb.contributor.internalauthor Lovecká, Lenka
utb.contributor.internalauthor Kimmer, Dušan
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Muhammad Yasir,* https://orcid.org/0000-0001-8999-2779 Fahanwi Asabuwa Ngwabebhoh, https://orcid.org/0000-0002-1492-1869 Tomáš Šopík, https://orcid.org/0000-0001-5671-1889 Lenka Lovecká, https://orcid.org/0000-0001-9532-7070 Dušan Kimmer https://orcid.org/0000-0001-9259-0279 and Vladimír Sedlařík* https://orcid.org/0000-0002-7843-0719 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic Correspondence to: M Yasir or V Sedlařík, Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic. E-mail: yasir@utb.cz (Yasir); sedlarik@utb.cz (Sedlařík)
utb.fulltext.dates Received: 8 June 2022 Revised: 11 July 2022 Accepted article published: 14 July 2022 First published: 14 July 2022
utb.fulltext.references 1 AlAbduljabbar FA, Haider S, Ali FAA, Alghyamah AA, Almasry WA, Patel R et al., Efficient photocatalytic degradation of organic pollutant in wastewater by electrospun functionally modified Polyacrylonitrile nanofibers membrane anchoring TiO2 nanostructured. Membranes 11:785 (2021). 2 Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z and Yang L, A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259 (2016). 3 Hamid N, Junaid M and Pei D-S, Combined toxicity of endocrinedisrupting chemicals: A review. Ecotoxicol Environ Saf 215:112136 (2021). 4 Haddaoui I and Mateo-Sagasta J, A review on occurrence of emerging pollutants in waters of the MENA region. Environ Sci Pollut Res 28: 68090–68110 (2021). 5 Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR and Sadeghi M, Toxic mechanisms of five heavy metals: mercury, Lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972 (2021). 6 Kocour Kroupová H, Valentová O, Svobodová Z, Šauer P and Máchová J, Toxic effects of nitrite on freshwater organisms: a review. Rev Aquac 10:525–542 (2018). 7 Chambers WS, Hopkins JG and Richards SM, A review of per- and Polyfluorinated alkyl substance impairment of reproduction. Frontiers in Toxicology 3:732436 (2021). 8 La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB et al., Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol 16:45–57 (2020). 9 Hilakivi-Clarke L, de Assis S and Warri A, Exposures to synthetic estrogens at different times during the life, and their effect on breast cancer risk. J Mammary Gland Biol Neoplasia 18:25–42 (2013). 10 Czarny K, Szczukocki D, Krawczyk B, Gadzała-Kopciuch R and Skrzypek S, Toxicity of single steroid hormones and their mixtures toward the cyanobacterium Microcystis aeruginosa. J Appl Phycol 31:3537–3544 (2019). 11 Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C et al., Current knowledge on endocrine disrupting chemicals (EDCs) from animal biology to humans, from pregnancy to adulthood: highlights from a national italian meeting. Int J Mol Sci 19:1647 (2018). 12 Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A et al., Environmental endocrine-disrupting chemical exposure: role in non-communicable diseases. Frontiers in Public Health 8:553850 (2020). 13 Henley DV, Lindzey J and Korach KS, Steroid hormones, in Endocrinology, ed. by Melmed S and Conn PM. Humana Press, Totowa, NJ, pp. 49–65 (2005). 14 Koh YKK, Chiu TY, Boobis A, Cartmell E, Scrimshaw MD and Lester JN, Treatment and removal strategies for estrogens from wastewater. Environ Technol 29:245–267 (2008). 15 Gao X, Kang S, Xiong R and Chen M, Environment-friendly removal methods for endocrine disrupting chemicals. Sustainability 12:7615 (2020). 16 Muhammad Y, Milan M, Tomas S, Hassan A, Michal U, Jan A et al., ZnO nanowires and nanorods based ZnO/WO3/Pt heterojunction for efficient photocatalytic degradation of Estriol (E3) hormone. Mater Lett 319:132291 (2022). 17 Yasir M, Sopik T, Patwa R, Kimmer D and Sedlarik V, Adsorption of estrogenic hormones in aqueous solution using electrospun nanofibers from waste cigarette butts: kinetics, mechanism, and reusability. Express Polym Lett 16:624–648 (2022). 18 Hartmann J, Beyer R and Harm S, Effective removal of estrogens from drinking water and wastewater by adsorption technology. Environ Process 1:87–94 (2014). 19 Peiris C, Nawalage S, Wewalwela JJ, Gunatilake SR and Vithanage M, Biochar based sorptive remediation of steroidal estrogen contaminated aqueous systems: A critical review. Environ Res 191:110183 (2020). 20 Ogata F, Tominaga H, Yabutani H and Kawasaki N, Removal of estrogens from water using activated carbon and ozone. J Oleo Sci 60: 609–611 (2011). 21 Wang X, Liu N, Liu Y, Jiang L, Zeng G, Tan X et al., Adsorption removal of 17⊎-estradiol from water by Rice straw-derived biochar with special attention to pyrolysis temperature and background chemistry. Int J Environ Res Public Health 14:1213 (2017). 22 O. Ifelebuegu A, Removal of Steriod hormones by activated carbon adsorption—kinetic and thermodynamic studies. J Environ Prot 03: 469–475 (2012). 23 Jiang L, Liu Y, Liu S, Zeng G, Hu X, Hu X et al., Adsorption of estrogen contaminants by graphene nanomaterials under natural organic matter preloading: comparison to carbon nanotube, biochar, and activated carbon. Environ Sci Technol 51:6352–6359 (2017). 24 Cheng C, Li X, Yu X, Wang M and Wang X, Chapter 14 – electrospun nanofibers for water treatment, in Micro and Nano Technologies, ed. by Ding B, Wang X, JBT-EN Y. William Andrew Publishing, pp. 419–453 (2019). https://doi.org/10.1016/B978-0-323-51270-1.00014-5 25 Agrawal S, Ranjan R, Lal B, Rahman A, Singh SP, Selvaratnam T et al., Synthesis and Water Treatment Applications of Nanofibers by Electrospinning. Processes 9:1779 (2021). 26 Matei E, Covaliu-Mierla CI, Ţurcanu AA, Râpă M, Predescu AM and Predescu C, Multifunctional membranes—A versatile approach for emerging pollutants removal. Membranes 12:67 (2022). 27 Mat Nawi NI, Chean HM, Shamsuddin N, Bilad MR, Narkkun T, Faungnawakij K et al., Development of hydrophilic PVDF membrane using vapour induced phase separation method for produced water treatment. Membranes 10:121 (2020). 28 Goetz LA, Naseri N, Nair SS, Karim Z and Mathew AP, All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals. Cellulose 25:3011–3023 (2018). 29 Liu L, Lin Z, Niu J, Tian D and He J, Electrospun polysulfone/poly(lactic acid) nanoporous fibrous mats for oil removal from water. Adsorpt Sci Technol. 37:438–450 (2019). 30 Rosalam S, Chiam CK, Widyaparamitha S, Chang YW and Lee CA, Water desalination by air-gap membrane distillation using meltblown polypropylene nanofiber membrane. IOP Conf Ser Earth Environ Sci 36:12032 (2016). 31 Li X, García-Payo MC, Khayet M, Wang M and Wang X, Superhydrophobic polysulfone/polydimethylsiloxane electrospun nanofibrous membranes for water desalination by direct contact membrane distillation. J Memb Sci 542:308–319 (2017). 32 Rahman ROA, El-Kamash AM and Hung Y-T, Applications of Nano-zeolite in wastewater treatment: an overview. Water 14:137 (2022). 33 Ivanoska-Dacikj A, Makreski P and Bogoeva-Gaceva G, Fabrication of biodegradable polyurethane electrospun webs of fibers modified with biocompatible graphene oxide nanofiller. J Ind Text 0(0):1–25 (2021). https://doi.org/10.1177/15280837211003165 34 Almasian A, Chizari Fard G, Parvinzadeh Gashti M, Mirjalili M and Mokhtari SZ, Surface modification of electrospun PAN nanofibers by amine compounds for adsorption of anionic dyes. Desalin Water Treat 57:10333–10348 (2016). 35 Han J, Qiu W and Gao W, Adsorption of estrone in microfiltration membrane filters. Chem Eng J [Internet] 165:819–826 (2010). https://doi.org/10.1016/j.cej.2010.10.024. 36 Han J, Qiu W, Cao Z, Hu J and Gao W, Adsorption of ethinylestradiol (EE2) on polyamide 612: molecular modeling and effects of water chemistry. Water Res 47:2273–2284 (2013). 37 Schäfer AI, Stelzl K, Faghih M, Sen Gupta S, Krishnadas KR, Heißler S et al., Poly(ether sulfone) nanofibers impregnated with ⊎-Cyclodextrin for increased micropollutant removal from water. ACS Sustain Chem Eng 6:2942–2953 (2018). 38 Wang M, Qu F, Jia R, Sun S, Li G and Liang H, Preliminary study on the removal of steroidal estrogens using TiO2-doped PVDF ultrafiltration membranes. Water 8:1–12 (2016). 39 Yasir M, Šopík T, Lovecká L, Kimmer D and Sedlařík V, The adsorption, kinetics, and interaction mechanisms of various types of estrogen on electrospun polymeric nanofiber membranes. Nanotechnology 33:75702 (2021). 40 Qi FF, Cao Y, Wang M, Rong F and Xu Q, Nylon 6 electrospun nanofibers mat as effective sorbent for the removal of estrogens: kinetic and thermodynamic studies. Nanoscale Res Lett 9:1–10 (2014). 41 Ersali S, Hadadi V, Moradi O and Fakhri A, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of ammonium ions using multi-walled carbon nanotube. Fuller Nanotub Carbon Nanostructures 3:150527104639002 (2013). 42 Tian Y, Wu M, Liu R, Li Y, Wang D, Tan J et al., Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr Polym [Internet] 83:743–748 (2011). 43 Al-Khateeb LA, Obaid AY, Asiri NA and Abdel SM, Adsorption behavior of estrogenic compounds on carbon nanotubes from aqueous solutions: kinetic and thermodynamic studies. J Ind Eng Chem 20:916–924 (2014). 44 Ho YS and McKay G, Application of kinetic models to the sorption of copper (II) on to peat. Adsorpt Sci Technol 20:797–815 (2002). 45 Ngwabebhoh FA, Mammadli N and Yildiz U, Bioinspired modified nanocellulose adsorbent for enhanced boron recovery from aqueous media: optimization, kinetics, thermodynamics and reusability study. J Environ Chem Eng 7:103281 (2019). 46 Carballa M, Fink G, Omil F, Lema JM and Ternes T, Determination of the solid-water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Res 42:287–295 (2008). 47 Prokić D, Vukčević M, Kalijadis A, Maletić M, Babić B and Đurkić T, Removal of Estrone, 17⊎-estradiol, and 17⊍-Ethinylestradiol from water by adsorption onto chemically modified activated carbon cloths. Fibers Polym 21:2263–2274 (2020). 48 Proki D, Vuk M, Mitrovi A, Maleti M, Kalijadis A, Jankovi I et al., Adsorption of estrone, 17⊎-estradiol, and 17⊍-ethinylestradiol from water onto modified multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon. Environ Sci Pollut Res 29: 4431–4445 (2021). 49 Ngwabebhoh FA, Erdem A and Yildiz U, Synergistic removal of cu(II) and nitrazine yellow dye using an eco-friendly chitosanmontmorillonite hydrogel: optimization by response surface methodology. J Appl Polym Sci 133:1–14 (2016). 50 Yasir M, Ngwabebhoh FA, Sopik T, Ali H and Sedlarik V, Electrospun polyurethane nanofibers coated with polyaniline / polyvinyl alcohol as ultrafiltration membranes for the removal of ethinylestradiol hormone micropollutant from aqueous phase. J Environ Chem Eng 10: 107811 (2022). 51 Kaspar P, Sobola D, Částková K, Knápek A, Burda D, Orudzhev F et al., Characterization of polyvinylidene fluoride (Pvdf) electrospun fibers doped by carbon flakes. Polymers 12:1–15 (2020). 52 Lanceros-Méndez S, Mano JF, Costa AM and Schmidt VH, FTIR and DSC studies of mechanically deformed ⊎-PVDF films. J Macromol Sci Phys 40B:517–527 (2001). 53 Sengupta D, Kottapalli AGP, Chen SH, Miao JM, Kwok CY, Triantafyllou MS et al., Characterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing applications. AIP Adv 7:105205 (2017). 54 Sepahi S, Kalaee M, Mazinani S, Abdouss M and Hosseini SM, Introducing electrospun polylactic acid incorporating etched halloysite nanotubes as a new nanofibrous web for controlled release of amoxicillin. J Nanostructure Chem 11:245–258 (2021). 55 Rosid SM, Ajji A, Hasbullah H, Rosid SJM, Ismail AF and Goh PS, Physicochemical characteristics of polysulfone nanofiber membranes with iron oxide nanoparticles via electrospinning. J Appl Polym Sci 139:1–10 (2022). 56 Mazoochi T, Hamadanian M, Ahmadi M and Jabbari V, Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters. Int J Ind Chem 3:1–8 (2012). 57 Schäfer AI, Akanyeti I and Semião AJC, Micropollutant sorption to membrane polymers: A review of mechanisms for estrogens. Adv Colloid Interface Sci 164:100–117 (2011). 58 Duan Q, Li X, Wu Z, Alsaedi A, Hayat T, Chen C et al., Adsorption of 17⊎- estradiol from aqueous solutions by a novel hierarchically nitrogendoped porous carbon. J Colloid Interface Sci 533:700–708 (2019). 59 Zhang J, Nguyen MN, Li Y, Yang C and Schäfer AI, Steroid hormone micropollutant removal from water with activated carbon fiberultrafiltration composite membranes. J Hazard Mater 391:122020 (2020). 60 Patel S, Han J and Gao W, Sorption of 17⊎-estradiol from aqueous solutions on to bone char derived from waste cattle bones: kinetics and isotherms. J Environ Chem Eng 3:1562–1569 (2015). 61 Gong K, Lin Y, Wu P, Jin X, Owens G and Chen Z, Removal mechanism of 17⊎-estradiol by carbonized green synthesis of Fe/Ni nanoparticles. Chemosphere 291:132777 (2022). 62 Jin X and Hu J, Role of water chemistry on estrone removal by nanofiltration with the presence of hydrophobic acids. Front Environ Sci Eng 9:164–170 (2015). 63 Tagliavini M, Engel F, Weidler PG, Scherer T and Schäfer AI, Adsorption of steroid micropollutants on polymer-based spherical activated carbon (PBSAC). J Hazard Mater 337:126–137 (2017). 64 Ngwabebhoh FA, Gazi M and Oladipo AA, Adsorptive removal of multiazo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Chem Eng Res Des 112:274–288 (2016).
utb.fulltext.sponsorship The authors gratefully acknowledge the financial support from the Ministry of Education, Youth, and Sports of the Czech Republic (RP/CPS/2022/002 and RP/CPS/2022/005) and the Internal Grant Agency of TBU in Zlin (grant no. IGA/CPS/2022/003). We would also like to acknowledge the Centre of Polymer Systems (CPS) situated at Tomas Bata University in Zlin, Czech Republic, for the use of their available research facilities to conduct this research work.
utb.wos.affiliation [Yasir, Muhammad; Asabuwa Ngwabebhoh, Fahanwi; Sopik, Tomas; Lovecka, Lenka; Kimmer, Dusan; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
utb.fulltext.projects RP/CPS/2022/002
utb.fulltext.projects RP/CPS/2022/005
utb.fulltext.projects IGA/CPS/2022/003
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.identifier.jel -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam