Publikace UTB
Repozitář publikační činnosti UTB

Atom transfer radical polymerization of pyrrole-bearing methacrylate for production of carbonyl iron particles with conducting shell for enhanced electromagnetic hielding

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Atom transfer radical polymerization of pyrrole-bearing methacrylate for production of carbonyl iron particles with conducting shell for enhanced electromagnetic hielding en
dc.contributor.author Mrlík, Miroslav
dc.contributor.author Kollár, Jozef
dc.contributor.author Borská, Katarína
dc.contributor.author Ilčíková, Markéta
dc.contributor.author Gorgol, Danila
dc.contributor.author Osička, Josef
dc.contributor.author Sedlačík, Michal
dc.contributor.author Ronzová, Alena
dc.contributor.author Kasák, Peter
dc.contributor.author Mosnáček, Jaroslav
dc.relation.ispartof International Journal of Molecular Sciences
dc.identifier.issn 1422-0067 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1661-6596 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 23
utb.relation.issue 15
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/ijms23158540
dc.relation.uri https://www.mdpi.com/1422-0067/23/15/8540
dc.relation.uri https://www.mdpi.com/1422-0067/23/15/8540/pdf?version=1659405851
dc.subject smart elastomer en
dc.subject polymer brushes en
dc.subject atom transfer radical polymerization en
dc.subject magnetic particle en
dc.subject interference shielding en
dc.description.abstract The conducting polymer poly(2-(1H-pyrrole-1-yl)ethyl methacrylate (PPEMA) was synthesized by conventional atom transfer radical polymerization for the first time from free as well as surface-bonded alkyl bromide initiator. When grafted from the surface of carbonyl iron (CI) a substantial conducting shell on the magnetic core was obtained. Synthesis of the monomer as well as its polymer was confirmed using proton spectrum nuclear magnetic resonance (H-1 NMR). Polymers with various molar masses and low dispersity showed the variability of this approach, providing a system with a tailorable structure and brush-like morphology. Successful grafting from the CI surface was elucidate by transmission electron microscopy and Fourier-transform infrared spectroscopy. Very importantly, thanks to the targeted nanometer-scale shell thickness of the PPEMA coating, the magnetization properties of the particles were negligibly affected, as confirmed using vibration sample magnetometry. Smart elastomers (SE) consisting of bare CI or CI grafted with PPEMA chains (CI-PPEMA) and silicone elastomer were prepared and dynamic mechanical properties as well as interference shielding ones were investigated. It was found that short polymer chains grafted to the CI particles exhibited the plasticizing effect, which might be interesting from the magnetorheological point of view, and more interestingly, in comparison to the neat CI-based sample, it provided enhanced electromagnetic shielding of nearly 30 dB in thickness of 500 mu m. Thus, SE containing the newly synthesized CI-PPEMA hybrid particles also exhibited considerably enhanced damping factor and proper mechanical performance, which make the material highly promising from various practical application points of view. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1011109
utb.identifier.obdid 43884115
utb.identifier.scopus 2-s2.0-85137123678
utb.identifier.wok 000839129200001
utb.identifier.pubmed 35955674
utb.source J-wok
dc.date.accessioned 2022-08-31T06:47:09Z
dc.date.available 2022-08-31T06:47:09Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic-DKRVO [RP/CPS/2022/003]; Internal Grant Agency of Tomas Bata University in Zlin [IGA/CPS/2021/003]; Integrated Infrastructure Operational Programme - ERDF [313021T081]; Slovak Research and Development Agency [APVV-19-0338]; Slovak Grant Agency VEGA [2/0129/19]; Qatar University Grant [QUCG-CAM-22/23-504]
dc.description.sponsorship RP/CPS/2022/003; Slovenská Akadémia Vied, SAV: 313021T081; Tomas Bata University in Zlin, TBU: IGA/CPS/2021/003; Qatar University, QU: QUCG-CAM-22/23-504; Agentúra na Podporu Výskumu a Vývoja, APVV: APVV-19-0338; Vedecká Grantová Agentúra MŠVVaŠ SR a SAV, VEGA: 2/0129/19; European Regional Development Fund, ERDF
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.ou Department of Physics and Materials Engineering
utb.ou Department of Production Engineering
utb.contributor.internalauthor Mrlík, Miroslav
utb.contributor.internalauthor Ilčíková, Markéta
utb.contributor.internalauthor Gorgol, Danila
utb.contributor.internalauthor Osička, Josef
utb.contributor.internalauthor Sedlačík, Michal
utb.contributor.internalauthor Ronzová, Alena
utb.fulltext.affiliation Miroslav Mrlík 1,* https://orcid.org/0000-0001-6203-6795 , Jozef Kollár 2, Katarína Borská 2, Markéta Ilčíková 1,2,3, Danila Gorgol 1 https://orcid.org/0000-0002-4354-3414 , Josef Osicka 1 https://orcid.org/0000-0002-4909-9350 , Michal Sedlačík 1,4 https://orcid.org/0000-0003-3918-5084 , Alena Ronzová 1,4, Peter Kasák 5 https://orcid.org/0000-0003-4557-1408 and Jaroslav Mosnáček 2,6,* https://orcid.org/0000-0001-9160-590X 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic; ilcikova@utb.cz (M.I.); d_gorgol@utb.cz (D.G.); osicka@utb.cz (J.O.); msedlacik@utb.cz (M.S.); a_ronzova@utb.cz (A.R.) 2 Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava, Slovakia; jozef.kollar@savba.sk (J.K.); katarina.borska@savba.sk (K.B.) 3 Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, 760 01 Zlin, Czech Republic 4 Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, 760 01 Zlin, Czech Republic 5 Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; peter.kasak@qu.edu.qa 6 Centre for Advanced Material Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia * Correspondence: mrlik@utb.cz (M.M.); jaroslav.mosnacek@savba.sk (J.M.)
utb.fulltext.dates Received: 25 April 2022 Revised: 27 July 2022 Accepted: 29 July 2022 Published: 1 August 2022
utb.fulltext.references 1. Ge, L.; Gong, X.L.; Wang, Y.; Xuan, S.H. The conductive three dimensional topological structure enhanced magnetorheological elastomer towards a strain sensor. Compos. Sci. Technol. 2016, 135, 92–99. [Google Scholar] [CrossRef] 2. Yang, J.; Sun, S.S.; Du, H.; Li, W.H.; Alici, G.; Deng, H.X. A novel magnetorheological elastomer isolator with negative changing stiffness for vibration reduction. Smart Mater. Struct. 2014, 23, 11. [Google Scholar] [CrossRef] 3. Zhao, L.J.; Yu, M.; Fu, J.; Zhu, M.; Li, B.S. A miniature MRE isolator for lateral vibration suppression of bridge monitoring equipment: Design and verification. Smart Mater. Struct. 2017, 26, 16. [Google Scholar] [CrossRef] 4. Mietta, J.L.; Jorge, G.; Negri, R.M. A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer. Smart Mater. Struct. 2014, 23, 12. [Google Scholar] [CrossRef] 5. Perales-Martinez, I.A.; Palacios-Pineda, L.M.; Lozano-Sanchez, L.M.; Martinez-Romero, O.; Puente-Cordova, J.G.; Elias-Zuniga, A. Enhancement of a magnetorheological PDMS elastomer with carbonyl iron particles. Polym. Test. 2017, 57, 78–86. [Google Scholar] [CrossRef] 6. Karl, C.W.; McIntyre, J.; Alshuth, T.; Kluppel, M. Magneto-Rheological Elastomers with switchable mechanical Properties. KGK-Kautsch. Gummi Kunstst. 2013, 66, 46–53. [Google Scholar] 7. Lokander, M.; Stenberg, B. Performance of isotropic magnetorheological rubber materials. Polym. Test. 2003, 22, 245–251. [Google Scholar] [CrossRef][Green Version] 8. Goshkoderia, A.; Rudykh, S. Stability of magnetoactive composites with periodic microstructures undergoing finite strains in the presence of a magnetic field. Compos. Pt. B-Eng. 2017, 128, 19–29. [Google Scholar] [CrossRef] 9. Sedlacik, M.; Mrlik, M.; Babayan, V.; Pavlinek, V. Magnetorheological elastomers with efficient electromagnetic shielding. Compos. Struct. 2016, 135, 199–204. [Google Scholar] [CrossRef] 10. Cvek, M.; Mrlik, M.; Ilcikova, M.; Mosnacek, J.; Munster, L.; Pavlinek, V. Synthesis of Silicone Elastomers Containing Silyl-Based Polymer Grafted Carbonyl Iron Particles: An Efficient Way to Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules 2017, 50, 2189–2200. [Google Scholar] [CrossRef] 11. Sykora, R.; Babayan, V.; Usakova, M.; Kruzelak, J.; Hudec, I. Rubber Composite Materials with the Effects of Electromagnetic Shielding. Polym. Compos. 2016, 37, 2933–2939. [Google Scholar] [CrossRef] 12. Darwish, M.S.A.; Mostafa, M.H.; Al-Harbi, L.M. Polymeric Nanocomposites for Environmental and Industrial Applications. Int. J. Mol. Sci. 2022, 23, 1023. [Google Scholar] [CrossRef] [PubMed] 13. Darwish, M.S.A.; Bakry, A.; Al-Harbi, L.M.; Khowdiary, M.M.; El-Henawy, A.A.; Yoon, J. Core/shell PA6 @ Fe3O4 nanofibers: Magnetic and shielding behavior. J. Dispers. Sci. Technol. 2020, 41, 1711–1719. [Google Scholar] [CrossRef] 14. Joseph, N.; Sebastian, M.T. Electromagnetic interference shielding nature of PVDF-carbonyl iron composites. Mater. Lett. 2013, 90, 64–67. [Google Scholar] [CrossRef] 15. Osicka, J.; Ilcikova, M.; Mrlik, M.; Minarik, A.; Pavlinek, V.; Mosnacek, J. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers 2017, 9, 264. [Google Scholar] [CrossRef][Green Version] 16. Babayan, V.; Kazantseva, N.E.; Moucka, R.; Stejskal, J. Electromagnetic shielding of polypyrrole-sawdust composites: Polypyrrole globules and nanotubes. Cellulose 2017, 24, 3445–3451. [Google Scholar] [CrossRef] 17. Kashi, S.; Gupta, R.K.; Baum, T.; Kao, N.; Bhattacharya, S.N. Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nanoplatelet nanocomposites. Mater. Des. 2016, 95, 119–126. [Google Scholar] [CrossRef] 18. Moucka, R.; Mravcakova, M.; Vilcakova, J.; Omastova, M.; Saha, P. Electromagnetic absorption efficiency of polypropylene/montmorillonite/polypyrrole nanocomposites. Mater. Des. 2011, 32, 2006–2011. [Google Scholar] [CrossRef][Green Version] 19. Yuan, X.Y.; Cheng, L.F.; Zhang, Y.J.; Guo, S.W.; Zhang, L.T. Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation. Mater. Des. 2016, 92, 563–570. [Google Scholar] [CrossRef] 20. Liu, X.F.; Zhang, L.T.; Yin, X.W.; Ye, F.; Liu, Y.S.; Cheng, L.F. Flexible thin SiC fiber fabrics using carbon nanotube modification for improving electromagnetic shielding properties. Mater. Des. 2016, 104, 68–75. [Google Scholar] [CrossRef] 21. Babayan, V.; Kazantseva, N.E.; Sapurina, I.; Moucka, R.; Stejskal, J.; Saha, P. Increasing the high-frequency magnetic permeability of MnZn ferrite in polyaniline composites by incorporating silver. J. Magn. Magn. Mater. 2013, 333, 30–38. [Google Scholar] [CrossRef] 22. Singh, A.P.; Mishra, M.; Sambyal, P.; Gupta, B.K.; Singh, B.P.; Chandra, A.; Dhawan, S.K. Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core-shell tubes as an exceptional tracker for electromagnetic environmental pollution. J. Mater. Chem. A 2014, 2, 3581–3593. [Google Scholar] [CrossRef] 23. Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S.K. Microwave Absorption Behavior of Core-Shell Structured Poly (3,4-Ethylenedioxy Thiophene)-Barium Ferrite Nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 927–933. [Google Scholar] [CrossRef] [PubMed] 24. Azadmanjiri, J.; Hojati-Talemi, P.; Simon, G.P.; Suzuki, K.; Selomulya, C. Synthesis and Electromagnetic Interference Shielding Properties of Iron Oxide/Polypyrrole Nanocomposites. Polym. Eng. Sci. 2011, 51, 247–253. [Google Scholar] [CrossRef] 25. Vu, Q.T.; Duong, N.T.; Duong, N.H. Polypyrrole/Al2O3 nanocomposites: Preparation, characterisation and electromagnetic shielding properties. J. Exp. Nanosci. 2009, 4, 213–219. [Google Scholar] [CrossRef] 26. Zhao, H.; Hou, L.; Lu, Y.X. Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites. Mater. Des. 2016, 95, 97–106. [Google Scholar] [CrossRef] 27. Cagnolati, R.; Lucchesi, M.; Rolla, P.A.; Castelvetro, V.; Ciardelli, F.; Colligiani, A. DC electrical transport in a new conducting polymer—Oxidized poly(n-vinylpyrrole). Synth. Met. 1992, 46, 127–131. [Google Scholar] [CrossRef] 28. Ruggeri, G.; Bianchi, M.; Puncioni, G.; Ciardelli, F. Molecular control of electric conductivity and structural properties of polymers of pyrrole derivatives. Pure Appl. Chem. 1997, 69, 143–149. [Google Scholar] [CrossRef] 29. Radtke, M.; Ignaszak, A. Carbon allotropes grafted with poly(pyrrole) derivatives via living radical polymerizations: Electrochemical analysis of nano-composites for energy storage. RSC Adv. 2017, 7, 35060–35074. [Google Scholar] [CrossRef][Green Version] 30. Yoon, J.T.; Lee, S.C.; Jeong, Y.G. Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos. Sci. Technol. 2010, 70, 776–782. [Google Scholar] [CrossRef] 31. Cheng, Q.L.; He, Y.; Pavlinek, V.; Li, C.Z.; Saha, P. Surfactant-assisted polypyrrole/titanate composite nanofibers: Morphology, structure and electrical properties. Synth. Met. 2008, 158, 953–957. [Google Scholar] [CrossRef] 32. Cvek, M.; Mrlik, M.; Ilcikova, M.; Mosnacek, J.; Babayan, V.; Kucekova, Z.; Humpolicek, P.; Pavlinek, V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015, 5, 72816–72824. [Google Scholar] [CrossRef][Green Version] 33. Mrlik, M.; Pavlinek, V. Magnetorheological suspensions based on modified carbonyl iron particles with an extremely thin poly(n-butyl acrylate) layer and their enhanced stability properties. Smart Mater. Struct. 2016, 25, 085011. [Google Scholar] [CrossRef] 34. Cvek, M.; Kollar, J.; Mrlik, M.; Masar, M.; Suly, P.; Urbanek, M.; Mosnacek, J. Surface-initiated mechano-ATRP as a convenient tool for tuning of bidisperse magnetorheological suspensions toward extreme kinetic stability. Polym. Chem. 2021, 12, 5093–5105. [Google Scholar] [CrossRef] 35. Mrlik, M.; Ilcikova, M.; Pavlinek, V.; Mosnacek, J.; Peer, P.; Filip, P. Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology. J. Colloid Interface Sci. 2013, 396, 146–151. [Google Scholar] [CrossRef] [PubMed] 36. Mrlik, M.; Ilcikova, M.; Cvek, M.; Pavlinek, V.; Zahoranova, A.; Kronekova, Z.; Kasak, P. Carbonyl iron coated with a sulfobetaine moiety as a biocompatible system and the magnetorheological performance of its silicone oil suspensions. RSC Adv. 2016, 6, 32823–32830. [Google Scholar] [CrossRef] 37. Stejskal, J.; Omastova, M.; Fedorova, S.; Prokes, J.; Trchova, M. Polyaniline and polypyrrole prepared in the presence of surfactants: A comparative conductivity study. Polymer 2003, 44, 1353–1358. [Google Scholar] [CrossRef] 38. Cvek, M.; Mrlik, M.; Sevcik, J.; Sedlacik, M. Tailoring Performance, Damping, and Surface Properties of Magnetorheological Elastomers via Particle-Grafting Technology. Polymers 2018, 10, 1411. [Google Scholar] [CrossRef] [PubMed][Green Version] 39. Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Doroshenko, M.; Koynov, K.; Danko, M.; Mosnacek, J. Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer 2015, 72, 368–377. [Google Scholar] [CrossRef] 40. Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Slouf, M.; Zhigunov, A.; Koynov, K.; Mosnacek, J. Synthesis of Photoactuating Acrylic Thermoplastic Elastomers Containing Diblock Copolymer-Grafted Carbon Nanotubes. ACS Macro Lett. 2014, 3, 999–1003. [Google Scholar] [CrossRef] 41. Possinger, T.; Bolzmacher, C.; Bodelot, L.; Triantafyllidis, N. Interfacial adhesion between the iron fillers and the silicone matrix in magneto-rheological elastomers at high deformations. In Smart Sensors, Actuators, and Mems Vi; Schmid, U., Aldavero, J., Leester Schaedel, M., Eds.; SPIE-Int. Soc. Optical Engineering: Bellingham, WA, USA, 2013; Volume 8763. [Google Scholar] 42. Yao, F.; Wu, Q.L.; Lei, Y.; Xu, Y.J. Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading. Ind. Crops Prod. 2008, 28, 63–72. [Google Scholar] [CrossRef] 43. Kirchberg, S.; Ziegmann, G. Thermogravimetry and Dynamic Mechanical Analysis of Iron Silicon Particle filled Polypropylene. J. Compos. Mater. 2009, 43, 1323–1334. [Google Scholar] [CrossRef] 44. Lakshmi, N.V.; Tambe, P.; Panda, B. Surface modified iron oxide (Fe3O4) nanosheets reinforced PVDF nanocomposites: Influence on morphology, thermal and magnetic properties. Plast. Rubber Compos. 2022, 51, 205–216. [Google Scholar] [CrossRef] 45. Anju, R.S.; Yadav, R.S.; Potschke, P.; Pionteck, J.; Krause, B.; Kuritka, I.; Vilcakova, J.; Skoda, D.; Urbanek, P.; Machovsky, M.; et al. CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding. Int. J. Mol. Sci. 2022, 23, 2610. [Google Scholar] [CrossRef] [PubMed] 46. Gupta, S.; Chang, C.; Lai, C.H.; Tai, N.H. Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding. Compos. Pt. B-Eng. 2019, 164, 447–457. [Google Scholar] [CrossRef] 47. Kumar, A.; Singh, A.K.; Tomar, M.; Gupta, V.; Kumar, P.; Singh, K. Electromagnetic interference shielding performance of lightweight NiFe2O4/rGO nanocomposite in X- band frequency range. Ceram. Int. 2020, 46, 15473–15481. [Google Scholar] [CrossRef] 48. Li, X.H.; Shu, R.W.; Wu, Y.; Zhang, J.B.; Wan, Z.L. Fabrication of nitrogen-doped reduced graphene oxide/cobalt ferrite hybrid nanocomposites as broadband electromagnetic wave absorbers in both X and Ku bands. Synth. Met. 2021, 271, 116621. [Google Scholar] [CrossRef] 49. Lopatin, A.V.; Kazantsev, Y.N.; Kazantseva, N.E.; Apletalin, V.N.; Mal’tsev, V.P.; Shatrov, A.D.; Saha, P. Radio absorbers based on magnetic polymer composites and frequency-selective surfaces. J. Commun. Technol. Electron. 2008, 53, 1114–1122. [Google Scholar] [CrossRef]
utb.fulltext.sponsorship The authors would like to acknowledge the Ministry of Education, Youth and Sports of the Czech Republic-DKRVO (RP/CPS/2022/003) and author A.R. gratefully acknowledge to the Internal Grant Agency of Tomas Bata University in Zlin (project no. IGA/CPS/2021/003) for financial support. This work was also performed during the implementation of the project Buildingup Centre for advanced materials application of the Slovak Academy of Sciences, ITMS project code 313021T081, supported by the Integrated Infrastructure Operational Programme funded by the ERDF. The authors also thank for financial support to the Slovak Research and Development Agency provided through grant APVV-19-0338 and the Slovak Grant Agency VEGA provided through grant 2/0129/19. P.K. is grateful that this publication was supported by Qatar University Grant QUCG-CAM-22/23-504.
utb.wos.affiliation [Mrlik, Miroslav; Ilcikova, Marketa; Gorgol, Danila; Osicka, Josef; Sedlacik, Michal; Ronzova, Alena] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic; [Kollar, Jozef; Borska, Katarina; Ilcikova, Marketa; Mosnacek, Jaroslav] Slovak Acad Sci, Polymer Inst, Bratislava 84541, Slovakia; [Ilcikova, Marketa] Tomas Bata Univ Zlin, Fac Technol, Dept Phys & Mat Engn, Vavreckova 275, Zlin 76001, Czech Republic; [Sedlacik, Michal; Ronzova, Alena] Tomas Bata Univ Zlin, Fac Technol, Dept Prod Engn, Vavreckova 275, Zlin 76001, Czech Republic; [Kasak, Peter] Qatar Univ, Ctr Adv Mat, POB 2713, Doha, Qatar; [Mosnacek, Jaroslav] Slovak Acad Sci, Ctr Adv Mat Applicat, Bratislava 84511, Slovakia
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, 760 01, Czech Republic; Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 845 41, Slovakia; Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, Zlin, 760 01, Czech Republic; Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, Zlin, 760 01, Czech Republic; Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Centre for Advanced Material Application, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 845 11, Slovakia
utb.fulltext.projects RP/CPS/2022/003
utb.fulltext.projects IGA/CPS/2021/003
utb.fulltext.projects ITMS 313021T081
utb.fulltext.projects APVV-19-0338
utb.fulltext.projects VEGA 2/0129/19
utb.fulltext.projects QUCG-CAM-22/23-504
utb.fulltext.faculty University Institute
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Department of Physics and Materials Engineering
utb.fulltext.ou Department of Production Engineering
utb.identifier.jel -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International