Publikace UTB
Repozitář publikační činnosti UTB

Measuring the pores' structure in P3HT organic polymeric semiconductor films using interface electrolyte/organic semiconductor redox injection reactions and bulk space-charge

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Measuring the pores' structure in P3HT organic polymeric semiconductor films using interface electrolyte/organic semiconductor redox injection reactions and bulk space-charge en
dc.contributor.author Schauer, František
dc.relation.ispartof Polymers
dc.identifier.issn 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 14
utb.relation.issue 17
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/polym14173456
dc.relation.uri https://www.mdpi.com/2073-4360/14/17/3456
dc.relation.uri https://www.mdpi.com/2073-4360/14/17/3456/pdf?version=1661340335
dc.subject organic polymeric semiconductors en
dc.subject pores structure en
dc.subject electronic structure en
dc.subject redox reactions en
dc.description.abstract The article is another in a series of follow-up articles on the new spectroscopic method Energy Resolved–Electrochemical Impedance Spectroscopy (ER-EIS) and presents a continuation of the effort to explain the method for electronic structure elucidation and its possibilities in the study of organic polymeric semiconductors. In addition to the detailed information on the electronic structure of the investigated organic semiconductor, the paper deals with three of the hitherto not solved aspects of the method, (1) the pores structure, which has been embedded in the evaluation framework of the ER-EIS method and shown, how the basic quantities of the pores structure, the volume density of the pores’ density coefficient β = (0.038 ± 0.002) nm−1 and the Brunauer-Emmet-Teller surface areas SABET SA == 34.5 m2g−1 may be found by the method, here for the archetypal poly(3-hexylthiophene-2,5-diyl) (P3HT) films. It is next shown, why the pore’s existence needs not to endanger the spectroscopic results of the ER-EIS method, and a proper way of the ER-EIS data evaluation is presented to avoid it. It is highlighted (2), how may the measurements of the pore structure contribute to the determination of the, for the method ER-EIS important, real rate constant of the overall Marcus’ D-A charge-transfer process for the poreless material and found its value kctD-A = (2.2 ± 0.6) × 10−25 cm4 s−1 for P3HT films examined. It is also independently attempted (3) to evaluate the range of kctD-A, based on the knowledge of the individual reaction rates in a chain of reactions, forming the whole D-A process, where the slowest one (organic semiconductor hopping transport) determines the tentative total result kctD-A ≅ 10−25 cm4 s−1. The effect of injection of high current densities by redox interface reactions in the bulk of OS with built-in pores structure may be very interesting for the design of new devices of organic electronics. © 2022 by the author. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011131
utb.identifier.obdid 43884084
utb.identifier.scopus 2-s2.0-85137807910
utb.identifier.wok 000851748800001
utb.identifier.pubmed 36080532
utb.source J-wok
dc.date.accessioned 2022-09-20T08:07:43Z
dc.date.available 2022-09-20T08:07:43Z
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Schauer, František
utb.fulltext.affiliation Franz Schauer https://orcid.org/0000-0002-1357-2097 Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, 760 05 Zlin, Czech Republic; fschauer@fai.utb.cz
utb.fulltext.dates Received: 4 July 2022 Revised: 10 August 2022 Accepted: 16 August 2022 Published: 24 August 2022
utb.fulltext.references 1. Kohler, A.; Bässler, H. Electronic Processes in Organic Semiconductor: An Introduction; Wiley-VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2015; p. 171, 175. [Google Scholar] 2. Bässler, H. Charge transport in disordered organic photoconductors–A Monte-Carlo simulation study. Phys. Stat. Sol. 1993, 175, 15–56. [Google Scholar] [CrossRef] 3. Gregg, A. Charged defects in soft semiconductors and their influence on organic photovoltaics. Soft Matter 2009, 5, 2989. [Google Scholar] [CrossRef] 4. Liu, X.; Fahlman, M. Electronic Structure Characterization of Soft Semiconductors. Adv. Mater. Interfaces 2019, 6, 1900439. [Google Scholar] [CrossRef][Green Version] 5. Sworakowski, J. How accurate are energies of HOMO and LUMO levels in small-molecule organic semiconductors determined from cyclic voltammetry or optical spectroscopy? Sxnthetic Met. 2018, 235, 125. [Google Scholar] [CrossRef] 6. Schauer, F. Electronic structure spectroscopy of organic semiconductors by Energy Resolved–Electrochemical Impedance Spectroscopy (ER-EIS). J. Appl. Phys. 2020, 128, 150902. [Google Scholar] [CrossRef] 7. Helmholtz, H. Űber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Der Phys. Und Chem. 1853, 165, 211. [Google Scholar] [CrossRef][Green Version] 8. Bässler, H.; Kroh, D.; Schauer, F.; Nádaždy, V.; Köhler, A. Mapping the Density of States Distribution of Organic Semiconductors by Employing Energy Resolved–Electrochemical Impedance Spectroscopy. Adv. Funct. Mater. 2020, 31, 2007738. [Google Scholar] [CrossRef] 9. Karki, J.; Vollbrecht, J.; Vollbrecht, A.J.; Gillett, F.; Schauer, N.T.Q. Unifying Charge Generation, Recombination, and Extraction in Low-Offset Non-Fullerene Acceptor Organic Solar Cells. Energy Mater. 2020, 10, 2001203. [Google Scholar] [CrossRef] 10. Athanasopoulos, S.; Schauer, F.; Nádaždy, V.; Weiß, M.; Kahle, F.-J.; Scherf, U.; Bässler, H.; Köhler, A. What is the Binding Energy of a Charge Transfer State in an Organic Solar Cell? Adv. Energy Mater. 2019, 9, 19008. [Google Scholar] [CrossRef] 11. Schauer, F.; Nádaždy, V.; Gmucová, K. Electrochemical impedance spectroscopy for the study of electronic structure in disordered organic semiconductors—Possibilities and limitations. J. Appl. Phys. 2018, 123, 161590. [Google Scholar] [CrossRef] 12. Schauer, F.; Tkáč, L.; Ožvoldová, M.; Nádaždy, V.; Gmucová, K.; Jergel, M.; Šiffalovič, P. Effect of crystallinity on UV degradability of poly[methyl(phenyl)silane]by Energy-Resolved Electrochemical Impedance Spectroscopy. AIP Adv. 2017, 7, 055002. [Google Scholar] [CrossRef][Green Version] 13. Schauer, F.; Tkáč, L.; Ožvoldová, M.; Nadáždy, V.; Gmucová, K.; Tkáčová, M.; Chlpík, J. Electronic Structure Mapping of Branching States in Poly[methyl(phenyl)silane] Upon Exposure to UV Radiation. Korean Phys. Soc. 2016, 68, 252. [Google Scholar] [CrossRef] 14. Volk, S.; Yazdani, N.; Sanusoglu, E.; Yarema, O.; Yarema, M.; Wood, V. Measuring the Electronic Structure of Nanocrystal Thin Films Using Energy-Resolved Electrochemical Impedance Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 1384. [Google Scholar] [CrossRef] [PubMed][Green Version] 15. Bisquert, J.; Marcus, R.A. Multiscale modelling of Organic and Hybrid Photovoltaics OS. In Modelling of Organic and Hybrid Photovoltaics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] 16. Wang, Q.; Ito, S.; Graetzel, M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J.; Bessho, T.; Imai, H. Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. 2006, B110, 25210. [Google Scholar] [CrossRef] 17. Marcus, R.A.; Sutin, N. Electron transfer in chemistry and Biology. Biochim. Biophys. Acta 1985, 811, 265. [Google Scholar] [CrossRef] 18. Marcus, R.A. Electron -transfer reactions in chemistry-theory and experiment. Rev. Mod. Phys. 1993, 65, 599. [Google Scholar] [CrossRef][Green Version] 19. Lewis, N.S. Progress in understanding electron-transfer reactions at semiconductor/liquid interfaces. J. Phys. Chem. B 1998, 102B, 4843. [Google Scholar] [CrossRef] 20. Fajardo, M.; Lewis, N.S. Free-energy dependence of electron-transfer rate constants at Si/liquid interfaces. J. Phys. Chem. B 1997, 101B, 11136. [Google Scholar] [CrossRef] 21. Pomykal, K.E.; Lewis, N.S. Measurement of interfacial charge-transfer rate constants at n-type InP/CH3OH junctions. J. Phys. Chem. B 1997, B101, 2476. [Google Scholar] [CrossRef] 22. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 2015, 87, 1051. [Google Scholar] [CrossRef][Green Version] 23. Cooper, I. Conjugated Microporous Polymers. Adv. Mater. 2009, 21, 1291. [Google Scholar] [CrossRef] 24. Liu, Q.; Li, G.; Tang, Z.; Chen, L.; Liao, B.; Ou, B.; Zhou, Z.; Zhou, H. Design and synthesis of conjugated polymers of tunable pore size distribution. Mater. Chem. Phys. 2017, 186, 11–18. [Google Scholar] [CrossRef] 25. Brunauer, S.; Emmett, H.; Teller, E. Adsorption of Bases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309. [Google Scholar] [CrossRef] 26. Ogiegloa, W.; Wormeesterb, H.; Eichhornc, K.-J.; Wesslingd, M.; Benesaa, N.E. In situ ellipsometry studies on swelling of thin polymer films: A review. Prog. Polym. Sci. 2015, 42, 42–78. [Google Scholar] [CrossRef] 27. Rose, M.; Böhlmann, W.; Sabo, M.; Kaskel, S. Element–organic frameworks with high permanent porosity. Chem. Commun. 2008, 2462–2464. [Google Scholar] [CrossRef] 28. Dawson, R.; Su, F.B.; Niu, H.J.; Wood, C.D.; Jones, J.T.A.; Khimyak, Y.Z.; Cooper, A.I. Mesoporous poly(phenylenevinylene) networks. Macromolecules 2008, 41, 1591. [Google Scholar] [CrossRef] 29. Salaneck, R.; Stafstrom, S.; Bredas, J.L. Conjugated Polymer Surfaces and Interfaces; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] 30. de Levie, R. Electrochemical response of porous and rough electrodes. In Advances in Electrochemistry and Electrochemical Engineering; Interscience: New York, NY, USA, 1967; Volume 6, p. 329. [Google Scholar] 31. Chidsey, E.D.; Murray, R.W. Electroactive polymer and macromolecular electronics. Science 1986, 231, 25. [Google Scholar] [CrossRef] 32. Chidsey, E.D.; Murray, R.W. Redoc capacity and direct–Current electron conductivity in elecroactive materials. J. Phys. Chem. 1986, 90, 1479. [Google Scholar] [CrossRef] 33. Careem, M.A.; Velmurugu, Y.; Skaarup, S.; West, K. A voltammetry study on the diffusion of counter ions in polypyrrole films. J. Power Sources 2006, 159, 210. [Google Scholar] [CrossRef] 34. Garcia-Belmonte, G.; Pomerantz, Z.; Bisquert, J.; Lellouche, J.-P.; Zaban, A. Analysis of ion diffusion and charging in electronically conducting polydicarbazole films by impedance methods. Electrochim. Acta 2004, 49, 3413. [Google Scholar] [CrossRef] 35. Garcia-Belmonte, G. Effect of electrode morphology on the diffusion length of the doping process of electronically conducting polypyrrole films. Electrochem. Commun. 2003, 5, 236. [Google Scholar] [CrossRef] 36. Garcia-Belmonte, G.; Bisquert, J. Impedance analysis of galvanostatically synthesized polypyrrole films. Correlation of ionic diffusion and capacitance parameters with the electrode morphology. Electrochim. Acta 2002, 47, 4263. [Google Scholar] [CrossRef] 37. Dai, A.; Wan, A.; Magee, C.; Zhang, Y.; Barlow, S.; Marder, S.R.; Kahn, A. Investigation of p-dopant diffusion in polymer films and bulk heterojunctions: Stable spatially-confined doping for all-solution processed solar cells. Org. Electron. 2015, 23, 151–157. [Google Scholar] [CrossRef][Green Version] 38. Ratcliff, L.; Lee, A.; Armstrong, N.R. Work function control of hole-selective polymer/ITO anode contacts: An electrochemical doping study. J. Mater. Chem. 2010, 20, 2672. [Google Scholar] [CrossRef] 39. Tang, G.; Ang, M.C.Y.; Choo, K.-K.; Keerthi, V.; Tan, J.-K.; Syafiqah, M.N.; Kugler, T.; Burroughes, J.H.; Png, R.-Q.; Chua, L.-L.; et al. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature 2016, 539, 536. [Google Scholar] [CrossRef] 40. Rudolph, M.; Ratcliff, E.L. Normal and inverted regimes of charge transfer controlled by density of states at polymer electrodes. Nat. Commun. 2017, 8, 1048. [Google Scholar] [CrossRef][Green Version] 41. Vorotyntsev, M.A.; Badiali, J.-P.; Inzelt, G. Electrochemical impedance spectroscopy of thin films with two mobile charge carriers: Effects of the interfacial charging. J. Electroanal. Chem. 1999, 472, 7. [Google Scholar] [CrossRef] 42. Gonçalves, R.; Pereira, E.C.; Marchesi, L.F. The Overoxidation of poly(3-hexylthiophene) (P3HT) Thin Film: CV and EIS measurements. Int. J. Electrochem. Sci. 2017, 12, 1983. [Google Scholar] [CrossRef] 43. Zheng, Z.; Tummala, R.; Wang, T.; Coropceanu, V.; Brédas, J.L. Charge-Transfer States at Organic–Organic Interfaces: Impact of Static and Dynamic Disorders. Adv. Energy Mater. 2019, 9, 1803926. [Google Scholar] [CrossRef] 44. Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.; Meijer, E.W.; Herwig, P.T.; et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688. [Google Scholar] [CrossRef] 45. Zen, A.; Saphiannikova, M.; Neher, D.; Grenzer, J.; Grigorian, S.; Pietsch, U.; Asawapirom, U.; Janietz, S.; Scherf, U.; Lieberwirth, I.; et al. Effect of Molecular Weight on the Structure and Crystallinity of Poly(3-hexylthiophene). Macromolecules 2006, 39, 2162–2171. [Google Scholar] [CrossRef] 46. Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.; Asawapirom, U.; Rabe, J.P.; Scherf, U.; Neher, D. Effect of Molecular Weight and Annealing of Poly(3-hexylthiophene)s on the Performance of Organic Field-Effect Transistors. Adv. Funct. Mater. 2004, 14, 757–764. [Google Scholar] [CrossRef] 47. DeLongchamp, M.; Kline, R.J.; Fischer, D.A.; Richter, L.J.; Toney, M.F. Molecular Characterization of Organic Electronic Films. Adv. Mater. 2011, 23, 319–337. [Google Scholar] [CrossRef] [PubMed] 48. Kim, Y.; Cook, S.; Tuladhar, S.M.; Choulis, S.; Nelson, J.; Durrant, J.R.; Bradley, D.; Giles, M.; McCulloch, I.; Ha, C.-S.; et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat. Mater. 2006, 5, 197–203. [Google Scholar] [CrossRef] 49. Chen, D.; Nakahara, A.; Wei, D.; Nordlund, D.; Russell, T.P. P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology. Nano Lett. 2011, 11, 561–567. [Google Scholar] [CrossRef] 50. Zhou, W.Y.; Xie, S.S.; Qian, S.F.; Zhou, T.; Zhao, R.A.; Wang, G.; Qian, L.X.; Li, W.Z. Optical absorption spectra of C70 thin films. J. Appl. Phys. 1996, 80, 459. [Google Scholar] [CrossRef] 51. Berson, S.; de Bettignies, R.; Bailly, S.; Guillerez, S. Poly (3-hexylthiophene) fibers for photovoltaic applications. Adv. Funct. Mater. 2007, 17, 1377–1384. [Google Scholar] [CrossRef] 52. Dang, M.T.; Hirsch, L.; Wantz, G. P3HT:PCBM, Best Seller in Polymer Photovoltaic Research. Adv. Mater. 2011, 23, 3597. [Google Scholar] [CrossRef] 53. Wadsworth, A.; Hamid, Z.; Bidwell, M.; Ashraf, R.S.; Khan, J.I.; Anjum, D.H.; Cendra, C.; Yan, J.; Rezasoltani, E.; Guilbert, A.A.Y.; et al. Progress in Poly (3-Hexylthiophene) Organic Solar Cells and the Influence of Its Molecular Weight on Device Performance. Adv. Energy Mater. 2018, 8, 1801001. [Google Scholar] [CrossRef] 54. Schauer, F.; Nádaždy, V.; Gmucová, K.; Váry, T. Electrochemically induced charge injection in disordered organic conductive polymers. J. Appl. Phys. 2018, 124, 165702. [Google Scholar] [CrossRef] 55. Shen, X.; Hu, W.; Russell, T.P. Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-hexylthiophene). Macromolecules 2016, 49, 4501–4509. [Google Scholar] [CrossRef] 56. Marcus, R.A. On the Theory of Oxidation-Reduction Reactions Involving Electronic Transfer. J. Chem. Phys. 1956, 24, 966. [Google Scholar] [CrossRef][Green Version] 57. Schmickler, W.; Santos, E. Interfacial Electrochemistry; Springer: Berlin, Germany, 2010. [Google Scholar] 58. de Vries, X.; Pascal, F.; Wenzel, W.; Coehoorn, R.; Bobbert, A. Full quantum treatment of charge dynamics in amorphous molecular semiconductors. Phys. Rev. B 2018, 97, 075203. [Google Scholar] [CrossRef][Green Version] 59. Gao, Y.Q.; Georgievskii, Y.; Marcus, R.A. On the theory of electronic transfer reactions at semiconductor electrode/liquid interfaces. J. Chem. Phys. 2000, 112, 3358. [Google Scholar] [CrossRef][Green Version] 60. Nadazdy, V.; Schauer, F.; Gmucova, K. Energy resolved electrochemical impedance spectroscopy for electronic structure. Appl. Phys. Lett. 2014, 105, 142109. [Google Scholar] [CrossRef][Green Version] 61. Arkhipov, V.I.; Heremans, P.; Emelianova, E.V.; Bässler, H. Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors. Phys. Rev. B 2005, 71, 045214. [Google Scholar] [CrossRef] 62. Nádaždy, V.; Gmucová, K.; Siffalovic, N.; Vegso, K.; Jergel, M.; Schauer, F.; Majkova, E. Thickness Effect on Structural Defect-Related Density of States and Crystallinity in P3HT Thin Films on ITO Substrates. J. Phys. Chem. C 2018, 122, 5881–5887. [Google Scholar] [CrossRef] 63. Marcus, R. Reflections on electron transfer theory. J. Chem. Phys. 2020, 153, 210401. [Google Scholar] [CrossRef] 64. Ondersma, J.W.; Hamann, T.W. Measurements and Modeling of Recombination from Nanoparticle TiO2 Electrodes. J. Am. Chem. Soc. 2011, 133, 8264. [Google Scholar] [CrossRef]
utb.fulltext.sponsorship This research received no external funding.
utb.wos.affiliation [Schauer, Franz] Tomas Bata Univ Zlin, Fac Appl Informat, Nad Stranemi 4511, Zlin 76005, Czech Republic
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin, 760 05, Czech Republic
utb.fulltext.projects -
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou -
utb.identifier.jel -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International