Kontaktujte nás | Jazyk: čeština English
dc.title | Long-term antimicrobial effect of polylactide-based composites suitable for biomedical use | en |
dc.contributor.author | Škrlová, Kateřina | |
dc.contributor.author | Rybková, Zuzana | |
dc.contributor.author | Stachurová, Tereza | |
dc.contributor.author | Zagora, Jakub | |
dc.contributor.author | Malachová, Kateřina | |
dc.contributor.author | Měřínská, Dagmar | |
dc.contributor.author | Gabor, Roman | |
dc.contributor.author | Havlíček, Miroslav | |
dc.contributor.author | Muñoz-Bonilla, Alexandra | |
dc.contributor.author | Fernández-García, Marta | |
dc.contributor.author | Plachá, Daniela | |
dc.relation.ispartof | Polymer Testing | |
dc.identifier.issn | 0142-9418 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1873-2348 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 116 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier Ltd | |
dc.identifier.doi | 10.1016/j.polymertesting.2022.107760 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0142941822002811 | |
dc.subject | polylactide | en |
dc.subject | polymer composites | en |
dc.subject | antimicrobial effect | en |
dc.subject | silver | en |
dc.subject | HDTMA | en |
dc.subject | HDP | en |
dc.subject | stents | en |
dc.description.abstract | This work deals with the preparation and characterization of antimicrobial polymeric composite materials based on polylactide, which is currently widely investigated to produce temporary implants. Polylactide was blended with antimicrobial fillers: silver, hexadecylpyridinium or hexadecyltrimethylammonium bromides anchored on vermiculite or graphene oxide matrices in an amount of 1% wt. The prepared samples were characterized by conventional methods, further they were exposed to degradation tests in physiological saline conditions and characterized for their antimicrobial properties using common pathogen microorganisms. It has been proven that the prepared polylactide composites change their antimicrobial effects after being in physiological saline of pH 7 and 9 for 0-6 months. The weight of the composites changed by about 10%, and antimicrobial properties were growing over time. The effectiveness of the composites was confirmed for 6 months at minimum. Therefore, they are suitable for the preparation of temporary stents, catheters or implants suitable for fracture fixation. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1011138 | |
utb.identifier.obdid | 43884005 | |
utb.identifier.scopus | 2-s2.0-85137723316 | |
utb.identifier.wok | 000861129800004 | |
utb.identifier.coden | POTED | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-09-30T08:34:14Z | |
dc.date.available | 2022-09-30T08:34:14Z | |
dc.description.sponsorship | European Commission, EC: LINKA20364; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Consejo Superior de Investigaciones Científicas, CSIC: CZ.02.2.69/0.0/0.0/19_073/0016945, DGS/INDIVIDUAL/2020-001 | |
dc.description.sponsorship | MSMT Operational program Research, development and education - European Union; CSIC [CZ.02.1.01/0.0/0.0/17_049/0008441]; MSMT Operational Programme Research, Development and Education [CZ.02.1.01/0.0/0.0/17_049/0008441]; [LINKA20364]; [CZ.02.2.69/0.0/0.0/19_073/0016945] | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights.access | openAccess | |
utb.contributor.internalauthor | Měřínská, Dagmar | |
utb.fulltext.affiliation | Kateřina Škrlová a, b , Zuzana Rybková c , Tereza Stachurová c , Jakub Zagora a, b , Kateřina Malachová c , Dagmar Mě řinská d , Roman Gabor a , Miroslav Havlíček e , Alexandra Muñoz-Bonilla f , Marta Fernández-García f , Daniela Plachá a, g, * a Nanotechnology Centre, CEET, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic b Center of Advanced Innovation Technologies, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic c Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic d Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01, Zlín, Czech Republic e Medin,a.s., Nové Město na Moravě, Czech Republic f Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain g ENET Centre, CEET, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic * Corresponding author. Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic. E-mail address: daniela.placha@vsb.cz (D. Plachá). | |
utb.fulltext.dates | Received 22 April 2022 Received in revised form 21 July 2022 Accepted 27 August 2022 Available online 5 September 2022 | |
utb.fulltext.references | [1] S. Teixeira, K.M. Eblagon, F. Miranda, R. Pereira, F. M, J.L. Figueiredo, Towards controlled degradation of poly(lactic) acid in technical applications, 7, 2021, p. 42, https://doi.org/10.3390/c7020042. [2] Moataz A. Elsawy, Ki-Hyun Kim, Jae-Woo Park, Akash Deep, Hydrolytic degradation of polylactic acid (PLA) and its composites, Renew. Sustain. Energy Rev. 79 (2017) 1346–1352, https://doi.org/10.1016/j.rser.2017.05.143. ISSN 1364-0321. [3] K. Škrlová, K. Malachová, A. Muňoz-Bonilla, D. Měřinská, Z. Rybková, M. Fernández-García, D. Plachá, Biocompatible polymer materials with antimicrobial properties for preparation of stents, Nanomaterials [online] 9 (11) (2019), https://doi.org/10.3390/nano9111548. ISSN 20794991. [4] L.-T. Lim, R. Auras, M. Rubino, Processing technologies for poly(lactic acid), Prog. Polym. Sci. 33 (Issue 8) (2008) 820–852, https://doi.org/10.1016/j.progpolymsci.2008.05.004. ISSN 0079-6700. [5] K. Rojas, D. Canales, N. Amigo, L. Montoille, A. Cament, L.M. Rivas, O. Gil-Castell, P. Reyes, M.T. Ulloa, A. Ribes-Greus, et al., E_ective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles, Compos. B Eng. 172 (2019) 173–178. [6] H. Liu, W. Song, F. Chen, L. Guo, J. Zhang, Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends, Macromolecules 44 (2011) 1513–1522. [7] A. Góra, D. Pliszka, S. Mukherjee, S. Ramakrishna, Tubular tissues and organs of human body—Challenges in regenerative medicine, J. Nanosci. Nanotechnol. 16 (2016) 19–39, https://doi.org/10.1166/jnn.2016.11604. [8] X. He, W. Fu, J. Zheng, Cell sources for trachea tissue engineering: past, present and future, Regen. Med. 7 (2012) 851–863, https://doi.org/10.2217/rme.12.96. [9] S. McMahon, N. Bertollo, E.D.O. Cearbhaill, J. Salber, L. Pierucci, P. Duffy, T. Dürig, V. Bi, W. Wang, Bio-resorbable polymer stents: a review of material progress and prospects, Prog. Polym. Sci. 83 (2018) 79–96, https://doi.org/10.1016/j.progpolymsci.2018.05.002. [10] T.R. Welch, A.W. Nugent, S.R. Veeram Reddy, Biodegradable stents for congenital heart disease, Interv. Cardiol. Clin. 8 (2019) 81–94, https://doi.org/10.1016/j.iccl.2018.08.009. [11] J. Laukkarinen, I. Nordback, J. Mikkonen, P. Kärkkäinen, J. Sand, A novel biodegradable biliary stent in the endoscopic treatment of cystic-duct leakage after cholecystectomy, Gastrointest. Endosc. 65 (2007) 1063–1068, https://doi.org/10.1016/j.gie.2006.11.059. [12] J. Laukkarinen, J. Sand, J. Leppiniemi, M. Kellomäki, I. Nordback, A novel technique for hepaticojejunostomy for nondilated bile ducts: a purse-string anastomosis with an intra-anastomotic biodegradable biliary stent, Am. J. Surg. 200 (2010) 124–130, https://doi.org/10.1016/j.amjsurg.2009.05.012. [13] G. Ginsberg, C. Cope, J. Shah, T. Martin, A. Carty, P. Habecker, C. Clerc, J.-P. Nuutinen, P. Törmälä, In vivo evaluation of a new bioabsorbable self-expanding biliary stent, Gastrointest. Endosc. 58 (2003) 777–784, https://doi.org/10.1016/S0016-5107(03)02016-9. [14] X. Xu, T. Liu, S. Liu, K. Zhang, Z. Shen, Y. Li, X. Jing, Feasibility of biodegradable PLGA common bile duct stents: an in vitro and in vivo study, J. Mater. Sci. Mater. Med. 20 (2009) 1167–1173, https://doi.org/10.1007/s10856-008-3672-2. [15] T.-F.C. Mah, G.A. O’Toole, Mechanisms of biofilm resistance to antimicrobial agents, Trends Microbiol. 9 (2001) 34–39, https://doi.org/10.1016/S0966-842X(00)01913-2. [16] I. Brook, Aerobic and anaerobic microbiology of biliary tract disease, J. Clin. Microbiol. 27 (10) (1989) 2373–2375. [17] M. Votava, P. Ondrovčík, Vybrané Kapitoly Z Klinické Mikrobiologie, 1998, ISBN 80-210-1805-4. [18] W. Levinson, Review of Medical Microbiology and Immunology, twelfth ed., McGraw-Hill Companies, 2012, ISBN 978-0-07-177434-5. [19] D.J. Sullivan, S. Azlin-Hasim, M. Cruz-Romero, E. Cummins, J.P. Kerry, M. A. Morris, Natural Antimicrobial Materials for Use in Food Packaging, Elsevier Inc., Amsterdam, The Netherlands, 2018. ISBN 9780128119822. [20] M. Azizi-Lalabadi, H. Hashemi, J. Feng, S.M. Jafari, Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites, Adv. Colloid Interface Sci. 284 (2020), https://doi.org/10.1016/j.cis.2020.102250, 102250, ISSN 0001-8686. [21] D. Plachá, J. Jampilek, Graphenic materials for biomedical aplications, Nanomateriály 9 (2019) 1758, https://doi.org/10.3390/nano9121758. [22] N. Li, L. Yu, Z. Xiao, C. Jiang, B. Gao, Z. Wang, Biofouling mitigation effect of thin film nanocomposite membranes immobilized with laponite mediated metal ions, Desalination 473 (114162) (2020), https://doi.org/10.1016/j.desal.2019.114162. ISSN 0011-9164. [23] C. Loyo, V. Moreno-Serna, J. Fuentes, N. Amigo, F.A. Sepúlveda, J. Ortiz A, L. M. Rivas, M.T. Ulloa, R. Benavente, P.A. Zapata, PLA/CaO nanocomposites with antimicrobial and photodegradation properties, Polym. Degrad. Stabil. 197 (2022), 109865, https://doi.org/10.1016/j.polymdegradstab.2022.109865. ISSN 0141-3910. [24] M. Yahyaoui, O. Gordobil, R.H. Díaz, M. Abderrabba, J. Labidi, Development of novel antimicrobial films based on poly(lactic acid) and essential oils, React. Funct. Polym. 109 (2016) 1–8, https://doi.org/10.1016/j.reactfunctpolym.2016.09.001. ISSN 1381-5148. [25] D. Plachá, A. Muñoz-Bonilla, K. Škrlová, C. Echeverria, A. Chiloeches, M. Petr, K. Lafdi, M. Fernández-García, Antibacterial character of cationic polymers attached to carbon-based nanomaterials, Nanomaterials 10 (6) (2020) 1218, https://doi.org/10.3390/nano10061218. [26] D. Plachá, G.S. Martynková, M. Rümmeli, Variations in the sorptive properties of organovermiculites modified with hexadecyltrimethylammonium and hexadecylpyridinium cations, J. Sci. Conf. Proc. [online] 2 (1) (2010) 36–41, https://doi.org/10.1166/jcp.2010.1006. ISSN 19376456. [27] D. Plachá, G.S. Martynková, M. Rümmeli, Preparation of organovermiculites using HDTMA: structure and sorptive properties using naphthalene, J. Colloid Interface Sci. [online] 327 (2) (2008) 341–347, https://doi.org/10.1016/j.jcis.2008.08.026. ISSN 00219797. [28] D. Plachá, G.S. Martynková, A. Bachmatiuk, P. Peikertová, J. Seidlerová, M. Rümmeli, The influence of pH on organovermiculite structure stability, Appl. Clay Sci. 93–94 (2014) 17–22, https://doi.org/10.1016/j.clay.2014.03.008. ISSN 0169-1317. [29] G. Gosheger, Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects, Biomaterials 25 (2004) 5547–5556. [30] S. Maharubin, C. Nayak, O. Phatak, A. Kurhade, M. Singh, Y. Zhou, G. Tan, Polyvinylchloride coated with silver nanoparticles and zinc oxide nanowires for antimicrobial applications, Mater. Lett. 249 (2019) 108–111. [31] P. Dutta, B. Wang, Zeolite-supported silver as antimicrobial agents, Coord. Chem. Rev. 383 (2019) 1–29. [32] S. Holešová, M. Hundáková, E. Pazdziora, Antibacterial kaolinite based nanocomposites, Procedia Mater. Sci. 12 (2016) 124–129. [33] J. Rhim, S. Hong, Ch Ha, Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films, LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 42 (Issue 2) (2009) 612–617, https://doi.org/10.1016/j.lwt.2008.02.015. ISSN 0023-6438. [34] J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan, H. Han, Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation, Nanoscale 6 (2014) 1879–1889. [35] K. Nakata, T. Tsuchido, Y. Matsumura, Antimicrobial cationic surfactant, cetyltrimethylammonium bromide, induces superoxide stress in Escherichia coli cells, J. Appl. Microbiol. 110 (2011) 568–579, https://doi.org/10.1111/j.1365-2672.2010.04912.x. [36] M. Turalija, S. Bischof, A. Budimir, S. Gaan, Antimicrobial PLA films from environment friendly additives, Compos. B Eng. 102 (2016) 94–99, https://doi.org/10.1016/j.compositesb.2016.07.017. ISSN 1359-8368. [37] H. Li, Z. Wang, H. Zhang, Z. Pan, Nanoporous PLA/(Chitosan nanoparticle) composite fibrous membranes with excellent air filtration and antibacterial performance, Polymers 10 (2018) 1085, https://doi.org/10.3390/polym10101085. [38] S. Khammassi, M. Tarfaoui, K. Škrlová, D. Měřínská, D. Plachá, F. Erchiqui, Poly(Lactic acid) (PLA)-Based nanocomposites: impact of vermiculite, silver, and graphene oxide on thermal stability, isothermal crystallization, and local mechanical behavior, J. Compos. Sci. 6 (2022) 112, https://doi.org/10.3390/jcs6040112. [39] N.F. Zaaba, M. Jaafar, A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation, Polym. Eng. Sci. 60 (2020) 2061–2075, https://doi.org/10.1002/pen.25511. [40] J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials [online] 21 (23) (2000) 2335–2346, https://doi.org/10.1016/S0142-9612(00)00101-0. ISSN 01429612. [41] Moataz A. Elsawy, Ki-Hyun Kim, Jae-Woo Park, Akash Deep, Hydrolytic degradation of polylactic acid (PLA) and its composites, Renew. Sustain. Energy Rev. 79 (2017) 1346–1352, https://doi.org/10.1016/j.rser.2017.05.143. ISSN 1364-0321. [42] T. Casalini, F. Rossi, A. Castrovinci, G. Perale, A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications, Front. Bioeng. Biotechnol. 7 (2019) 259, https://doi.org/10.3389/fbioe.2019.00259. [43] A.S. Niknejad, S. Bazgir, A. Kargari, Mechanically improved superhydrophobic nanofibrous polystyrene/high-impact polystyrene membranes for promising membrane distillation application, J. Appl. Polym. Sci. 138 (2021), e50917, https://doi.org/10.1002/app.50917. [44] G.F. Brooks, K.C. Carroll, J.S. Butel, S.A. Morse, T.A. Mietzner, Jawetz, Melnick, & Adelberg’s Medical Microbiology, 26th Edition, McGraw-Hill Companies, 2013, ISBN 978-0-07-179031-4. [45] ISO 20776-1, Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices — Part 1: Broth Micro-dilution Reference Method for Testing the in Vitro Activity of Antimicrobial Agents against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases, Clinical laboratory testing and in vitro diagnostic test systems, 2019, p. 19. [46] The European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute, Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Method, 2021. https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/. (Accessed 1 January 2021). [47] EUCAST, Disk Diffusion Methodology, 2021. EUCAST: EUCAST [online]. Copyright © [cit. 12.12, https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/. [48] M. Pinto, T.M. Langer, T. Hüffer, T. Hofmann, G.J. Herndl, The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession, PLoS One 14 (6) (2019), e0217165, https://doi.org/10.1371/journal.pone.0217165. [49] S.B. Aziz, R.T. Abdulwahid, M.A. Rasheed, O.G. Abdullah, H.M. Ahmed, Polymer blending as a novel approach for tuning the SPR peaks of silver nanoparticles, Polymers 9 (2017) 486, https://doi.org/10.3390/polym9100486. [50] K. Garg, P. Papponen, A. Johansson, et al., Preparation of graphene nanocomposites from aqueous silver nitrate using graphene oxide’s peroxidase-like and carbocatalytic properties, Sci. Rep. 10 (2020) 5126, https://doi.org/10.1038/s41598-020-61929-9. [51] K. Malachová, P. Praus, Z. Pavlíčková, M. Turicová, Activity of antibacterial compounds immobilised on montmorillonite, Appl. Clay Sci. 43 (3) (2009) 364–368, https://doi.org/10.1016/j.clay.2008.11.003. ISSN 0169-1317. [52] J. Said, C.C. Dodoo, M. Walker, D. Parsons, P. Stapleton, A.E. Beezer, S. Gaisford, An in vitro test of the efficacy of silver-containing wound dressings against Staphylococcus aureus and Pseudomonas aeruginosa in simulated wound fluid, Int. J. Pharm. 462 (1–2) (2014) 123–128, https://doi.org/10.1016/j.ijpharm.2013.12.037. [53] S.G.G. Saravia, S.E. Rastelli, C.A. Pineda, H. Palza, M.R. Viera, Antiadhesion and antibacterial activity of silver nanoparticles and graphene oxide-silver nanoparticle composites, Matéria (Rio J.) 25 (2) (2020), https://doi.org/10.1590/s1517-707620200002.1071. [54] X. Mao, D.L. Auer, W. Buchalla, K.-A. Hiller, T. Maisch, E. Hellwig, A. Al-Ahmad, F. Cieplik, Cetylpyridinium chloride: mechanism of action, antimicrobial efficacy in biofilms, and potential risks of resistance, Antimicrob. Agents Chemother. 64 (2020), https://doi.org/10.1128/AAC.00576-20 e00576-20. [55] S.Y. Lee, S.Y. Lee, Susceptibility of oral streptococci to chlorhexidine and cetylpyridinium chloride, Biocontrol Sci. 24 (1) (2019) 13–21, https://doi.org/10.4265/bio.24.13. [56] R.C. Beier, S.L. Foley, M.K. Davidson, D.G. White, P.F. McDermott, S. Bodeis-Jones, S. Zhao, K. Andrews, T.L. Crippen, C.L. Sheffield, T.L. Poole, R.C. Anderson, D. J. Nisbet, Characterization of antibiotic and disinfectant susceptibility profiles among Pseudomonas aeruginosa veterinary isolates recovered during 1994–2003, J. Appl. Microbiol. 118 (2) (2014) 326–342, https://doi.org/10.1111/jam.12707, 96. [57] H.C. Araujo, L.S. Arias, A.C.M. Caldeirão, L.C.d.F. Assumpção, M.G. Morceli, F. N. de Souza Neto, E.R. de Camargo, S.H.P. Oliveira, J.P. Pessan, D.R. Monteiro, Novel colloidal nanocarrier of cetylpyridinium chloride: antifungal activities on Candida species and cytotoxic potential on murine fibroblasts, J. Fungi 6 (2020) 218, https://doi.org/10.3390/jof6040218. [58] Ch Liu, J. Shen, K.W.K. Yeung, S.Ch Tjong, Development and antibacterial performance of novel polylactic acid-graphene oxide-silver nanoparticle hybrid nanocomposite mats prepared by electrospinning, ACS Biomater. Sci. Eng. 3 (3) (2017) 471–486, https://doi.org/10.1021/acsbiomaterials.6b00766. [59] C.S. Lovell, J.M. Fitz-Gerald, C. Park, Decoupling the effects of crystallinity and orientation on the shear piezoelectricity of polylactic acid, J. Polym. Sci., Part B: Polym. Phys. 49 (2011) 1555–1562. [60] M.A. Cuiffo, J. Snyder, A.M. Elliott, N. Romero, S. Kannan, G.P. Halada, Impact of the fused deposition (FDM) printing process on polylactic acid (PLA) chemistry and structure, Appl. Sci. 579 (2017), https://doi.org/10.3390/app7060579. [61] Y. Hsieh, S. Nozaki, M. Kido, K. Kamitani, K. Kojio, A. Takahara, Crystal polymorphism of polylactide and its composites by X-ray diffraction study, Polym. J. 52 (2020) 755–763, https://doi.org/10.1038/s41428-020-0343-8. [62] M.E. Mngomezulu, A.S. Luyt, M.J. John, Morphology, thermal and dynamic mechanical properties of poly(lactic acid)/expandable graphite (PLA/EG) flame retardant composites, J. Thermoplast. Compos. Mater. 32 (1) (2019) 89–107. [63] H. Tsuji, Y. Ikada, Properties and morphology of poly (L-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly (L-lactide) in phosphate-buffered solution, Polym. Degrad. Stabil. 67 (2000) 179–189. [64] M. Hakkarainen, Aliphatic Polyesters: Abiotic and Biotic Degradation and Degradation Products Degrad. Aliphatic Polyesters, Springer, 2002, pp. 113–138. [65] A. Paul, C. Delcourt, M. Alexandre, P. Degée, F. Monteverde, P. Dubois, Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation, Polym. Degrad. Stabil. 87 (2005) 535–542. [66] Q. Zhou, M. Xanthos, Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides, Polym. Degrad. Stabil. 93 (2008) 1450–1459. [67] I. Grizzi, H. Garreau, S. Li, M. Vert, Hydrolytic degradation of devices based on poly (DL-lactic acid) size-dependence, Biomaterials 16 (1995) 305–311. [68] S. Lyu, D. Untereker, Degradability of polymers for implantable biomedical devices, Int. J. Mol. Sci. 10 (2009) 4033–4065. [69] A. Göpferich, Mechanisms of polymer degradation and erosion, Biomaterials 17 (1996) 103–114, https://doi.org/10.1016/0142-9612(96)85755-3. [70] G. Schliecker, C. Schmidt, S. Fuchs, T. Kissel, Characterization of a homologous series of D, L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro, Biomaterials 24 (2003) 3835–3844. [71] M.D. Fernández, M.J. Fernández, Vermiculite/poly(lactic acid) composites: effect of nature of vermiculite on hydrolytic degradation in alkaline medium, Appl. Clay Sci. 143 (2017) 29–38. [72] S.H. Lee, S. Wang, Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent, Compos. Appl. Sci. Manuf. 37 (2006) 80–91. [73] I. Noda, M.M. Satkowski, A.E. Dowrey, C. Marcott, Polymer alloys of Nodax copolymers and poly (lactic acid), Macromol. Biosci. 4 (2004) 269–275. [74] Ch Liao, Y. Li, S.Ch Tjong, Antibacterial activities or aliphatic polyester nanocomposites with silver nanoparticles and/or graphene oxide sheets, Nanometerials 9 (2019) 8, 1102. [75] D. Plachá, K. Rosenbergová, J. Slabotínský, K. Mamulová Kutláková, S. Študentová, G.S. Martynková, Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection, J. Hazard Mater. 271 (2014) 65–72. | |
utb.fulltext.sponsorship | This study was supported by the project no. CZ.02.1.01/0.0/0.0/17_049/0008441 “Innovative Therapeutic Methods of Musculoskeletal System in Accident Surgery” within the MSMT Operational program Research, development and education financed by the European Union, by the project LINKA20364 “Design of novel antimicrobial biobased materials using supercritical fluids processes” financed by CSIC and by the project no. CZ.02.2.69/0.0/0.0/19_073/0016945 within the MSMT Operational Programme Research, Development and Education, under project DGS/INDIVIDUAL/2020-001 ″Development of antimicrobial biobased polymeric material using supercritical fluid technology". | |
utb.wos.affiliation | [Skrlova, Katerina; Zagora, Jakub; Gabor, Roman; Placha, Daniela] VSB Tech Univ Ostrava, Nanotechnol Ctr, CEET, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic; [Skrlova, Katerina; Zagora, Jakub] VSB Tech Univ Ostrava, Ctr Adv Innovat Technol, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic; [Rybkova, Zuzana; Stachurova, Tereza; Malachova, Katerina] Univ Ostrava, Fac Sci, Dept Biol & Ecol, Ostrava 71000, Czech Republic; [Merinska, Dagmar] Tomas Bata Univ Zlin, Fac Technol, Vavreakova 275, Zlin 76001, Czech Republic; [Havlicek, Miroslav] Medin as, Nove Mesto Na Morave, Czech Republic; [Munoz-Bonilla, Alexandra; Fernandez-Garcia, Marta] Inst Polymer Sci & Technol ICTP CSIC, Juan De La Cierva 3, Madrid 28006, Spain; [Placha, Daniela] VSB Tech Univ Ostrava, ENET Ctr, CEET, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic | |
utb.scopus.affiliation | Nanotechnology Centre, CEET, VSB – Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic; Center of Advanced Innovation Technologies, VSB – Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic; Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín, 760 01, Czech Republic; Medin,a.s., Nové Město na Moravě, Czech Republic; Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, Madrid, 28006, Spain; ENET Centre, CEET, VSB – Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic | |
utb.fulltext.projects | CZ.02.1.01/0.0/0.0/17_049/0008441 | |
utb.fulltext.projects | LINKA20364 | |
utb.fulltext.projects | CZ.02.2.69/0.0/0.0/19_073/0016945 | |
utb.fulltext.projects | DGS/INDIVIDUAL/2020-001 | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.ou | - | |
utb.identifier.jel | - |