Publikace UTB
Repozitář publikační činnosti UTB

In-situ coating of leather with conducting polyaniline in colloidal dispersion mode

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title In-situ coating of leather with conducting polyaniline in colloidal dispersion mode en
dc.contributor.author Asabuwa Ngwabebhoh, Fahanwi
dc.contributor.author Zandraa, Oyunchimeg
dc.contributor.author Sáha, Tomáš
dc.contributor.author Stejskal, Jaroslav
dc.contributor.author Trchová, Miroslava
dc.contributor.author Kopecký, Dušan
dc.contributor.author Pfleger, Jiří
dc.contributor.author Prokeš, Jan
dc.relation.ispartof Synthetic Metals
dc.identifier.issn 0379-6779 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 291
dc.type article
dc.language.iso en
dc.publisher Elsevier Ltd
dc.identifier.doi 10.1016/j.synthmet.2022.117191
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0379677922001850
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0379677922001850/pdfft?md5=33ae205229f49cba9b43549a2a2ffb67&pid=1-s2.0-S0379677922001850-main.pdf
dc.subject polyaniline en
dc.subject conducting composites en
dc.subject conducting leather en
dc.subject bending tests en
dc.subject sheet resistance en
dc.description.abstract Four different leathers and a nonwoven fibrous mat have been coated with a conducting polymer, polyaniline, in situ during the oxidation of aniline hydrochloride in the presence of poly(N-vinylpyrrolidone) stabilizer. This colloidal dispersion approach prevented the undesirable formation of free polyaniline precipitate outside the leather fibers. The molecular structure of polypeptide fibers with deposited polyaniline is discussed on the basis of FTIR spectra. Raman spectroscopy confirmed that individual fibers were coated with a conducting polymer. The cross-sectional optical microscopy revealed that the leather was coated on both sides. The layer thickness, tens to hundreds micrometers, was determined by the penetration depth of reaction mixture. In the case of diabetic insole mat gambrela, polyaniline penetrated throughout the sample body. This was also confirmed by the measurement of transversal resistance. The typical sheet resistance was in units to hundreds k omega/sq and differed but was of the same order of magnitude on top and bottom sides. The samples were subject to cyclic bending and of the resistivity changes have been monitored. Antibacterial activity of some leathers improved after the coating with polyaniline. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011153
utb.identifier.obdid 43884343
utb.identifier.scopus 2-s2.0-85138790874
utb.identifier.wok 000868328500002
utb.identifier.coden SYMED
utb.source j-scopus
dc.date.accessioned 2022-10-18T12:15:15Z
dc.date.available 2022-10-18T12:15:15Z
dc.description.sponsorship Technology Agency of the Czech Republic, TACR; Tomas Bata University in Zlin, TBU: TP01010006
dc.description.sponsorship Tomas Bata University in Zlin [TP01010006]; Technology Agency of the Czech Republic
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Asabuwa Ngwabebhoh, Fahanwi
utb.contributor.internalauthor Zandraa, Oyunchimeg
utb.contributor.internalauthor Sáha, Tomáš
utb.contributor.internalauthor Stejskal, Jaroslav
utb.fulltext.affiliation Fahanwi Asabuwa Ngwabebhoh a, 1 , Oyunchimeg Zandraa a, 2 , Tomá š Sáha a, 3 , Jaroslav Stejskal a, b, *, 4 , Miroslava Trchová b, 5 , Dušan Kopecký b , Jiří Pfleger c, 6 , Jan Prokeš d, 7 a University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic b University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic c Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic d Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8, Czech Republic * Corresponding author at: University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic. E-mail address: stejskal@utb.cz (J. Stejskal). 1 ORCID: 0000-0002-1492-1869. 2 ORCID: 0000-0002-5330-6906. 3 ORCID: 0000-0002-8091-8481. 4 ORCID: 0000-0001-9350-9647. 5 ORCID: 0000-0001-6105-7578. 6 ORCID: 0000-0003-2813-7343. 7 ORCID: 0000-0002-8635-7056.
utb.fulltext.dates Received 8 August 2022 Received in revised form 6 September 2022 Accepted 16 September 2022 Available online 29 September 2022
utb.fulltext.references [1] R. Gangopadhyay, A. De, Conducting polymer nanocomposites: a brief overview, Chem. Mater. 12 (2000) 608–622, https://doi.org/10.1021/cm990537f. [2] J. Stejskal, M. Trchová, P. Bober, P. Humpolíček, V. Kašpárková, I. Sapurina, M. A. Shishov, M. Varga, Conducting polymers: polyaniline, in: Encyclopedia of Polymer Science and Technology, Wiley Online Library, 2015. [3] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1–12, https://doi.org/10.1016/j.jpowsour.2010.06.084. [4] J. Stejskal, Conducting polymers are not just conducting: a perspective for emerging technology, Polym. Int. 69 (2020) 662–664, https://doi.org/10.1002/pi.5947. [5] T.R. Zhang, S.L. Zeng, H. Jiang, Z.S. Li, D.Y. Bai, Y.J. Li, J.J. Li, Leather solid waste/poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding, ACS Appl. Mater. Interfaces 13 (2021) 11332–11343, https://doi.org/10.1021/acsami.1c00880. [6] V. Grm, D. Zavec, G. Dražić, A carbon-nanotubes-based heating fabric composite for automotive applications, Mater. Tehnol. 54 (2020) 761–768, https://doi.org/10.17222/mit.2019.238. [7] K. Zhang, N.W. Kang, B. Zhang, R.J. Xie, J.Y. Zhu, B.H. Zou, Y.H. Liu, Y.Y. Chen, W. Shi, W.N. Zhang, W. Huang, J.S. Wu, F.W. Huo, Conformal and antibacterial PPy-leather electrode for ECG monitoring, Adv. Electron. Mater. 6 (2020) 2000259, https://doi.org/10.1002/aelm.202000259. [8] J.D. Wegene, P. Thanikaivelan, Conducting leathers for smart product applications, Ind. Eng. Chem. Res. 53 (2014) 18209–18215, https://doi.org/10.1021/ie503956p. [9] W.J. Demisie, T. Palanisamy, K. Kaliappa, P. Kavati, C. Bangaru, Concurrent genesis of color and electrical conductivity in leathers through in-situ polymerization of aniline for smart product applications, Polym. Adv. Technol. 26 (2015) 521–527, https://doi.org/10.1002/pat.3483. [10] J. Stejskal, I. Sapurina, Polyaniline: Thin films and colloidal dispersions (IUPAC technical report), Pure Appl. Chem. 77 (2005) 815–826, https://doi.org/10.1351/pac200577050815. [11] F.A. Ngwabebhoh, N. Saha, H.T. Nguyen, U.V. Brodnjak, T. Sáha, A. Lengalová, P. Sáha, Preparation and characterization of nonwoven fibrous biocomposites for footwear components, Polymers 12 (2020) 3016, https://doi.org/10.3390/polym12123016. [12] N. Maráková, P. Humpolíček, V. Kašpárková, Z. Capáková, L. Martinková, P. Bober, M. Trchová, J. Stejskal, Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles, Appl. Surf. Sci. 396 (2017) 169–176, https://doi.org/10.1016/j.apsusc.2016.11.024. [13] J. Yu, Z. Pang, J. Zhang, H. Zhou, Q. Wei, Conductivity and antibacterial properties of wool fabrics finished by polyaniline/chitosan, Colloid Surf. A, Physicochem. Eng. Asp. 548 (2018) 117–124, https://doi.org/10.1016/j.colsurfa.2018.03.065. [14] A. Riede, M. Helmstedt, I. Sapurina, J. Stejskal, In situ polymerized polyaniline films 4. Film formation in dispersion polymerization of aniline, J. Colloid Interface Sci. 248 (2002) 413–418, https://doi.org/10.1006/jcis.2001.8197. [15] J. Stejskal, I. Sapurina, On the origin of colloidal particles in the dispersion polymerization of aniline, J. Colloid Interface Sci. 274 (2004) 489–495, https://doi.org/10.1016/j.jcis.2004.02.053. [16] J. Stejskal, M. Trchová, H. Kasparyan, D. Kopecký, Z. Kolská, J. Prokeš, I. Křivka, J. Vajďák, P. Humpolíček, Pressure-sensitive conducting and antibacterial materials obtained by in-situ dispersion coating of macroporous melamine sponges with polypyrrole, ACS Omega 6 (2021) 20895–20901, https://doi.org/10.1021/acsomega.1c02330. [17] Y.F. Ma, W. Cheung, D.G. Wei, A. Bogozi, P.L. Chiu, L. Wang, F. Pontoriero, R. Mendelsohn, H.X. He, Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer, ACS Nano 2 (2008) 1197–1204, https://doi.org/10.1021/nn800201n. [18] J. Stejskal, Conducting polymer hydrogels, Chem. Pap. 71 (2017) 269–291, https://doi.org/10.1007/s11696-016-0072-9. [19] T. Riaz, R. Zeeshan, F. Zarif, K. IIyas, N. Muhammad, Z.F. Safi, A. Rahim, S.A. A. Rizvi, I.U. Rehman, FTIR analysis of natural and synthetic collagen, Appl. Spectrosc. Rev. 53 (2018) 703–746, https://doi.org/10.1080/05704928.2018.1426595. [20] M. Trchová, J. Stejskal, Resonance Raman spectroscopy of conducting polypyrrole nanotubes: disordered surface versus ordered body, J. Phys. Chem. A 122 (2018) 9298–9306, https://doi.org/10.1021/acs.jpca.8b09794. [21] B.J. Li, W.J. Tang, D. Sun, B.B. Li, Y.X. Ge, X. Ye, W. Fang, Electrochemical manufacture of graphene oxide/polyaniline conductive membrane for antibacterial application and electrically enhanced water permeability, J. Membr. Sci. 640 (2021), 119844, https://doi.org/10.1016/j.memsci.2021.119844. [22] Q. Pang, K.H. Wu, Z.L. Jiang, Z.W. Shi, Z.Z. Si, Q. Wang, Y.H. Cao, R.X. Hou, Y. B. Zhu, A polyaniline nanoparticles crosslinked hydrogel with excellent photothermal antibacterial and mechanical properties for wound dressing, Macromol. Biosci. 22 (2022) 2100386, https://doi.org/10.1002/mabi.202100386. [23] F. Fenniche, A. Henni, Y. Khane, D. Aouf, N. Harfouche, S. Bensalem, D. Zerrouki, H. Belkhalfa, Electrochemical synthesis of reduced graphene oxide-wrapped polyaniline nanorods for improved photocatalytic and antibacterial activities, J. Inorg. Organometal. Polym. Mater. 32 (2022) 1011–1025, https://doi.org/10.1007/s10904-021-02204-w. [24] J. Stejskal, Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition, Chem. Pap. 74 (2020) 1–54, https://doi.org/10.1007/s11696-019-00982-9]. [25] M.H. Salehi, H. Golbaten-Mofrad, S.H. Jafari, V. Goodarzi, M. Entezari, M. Hashemi, S. Zamanlui, Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay, Int. J. Biol. Macromol. 173 (2021) 467–480, https://doi.org/10.1016/j.ijbiomac.2021.01.121.
utb.fulltext.sponsorship The project was funded by the Tomas Bata University in Zlin (TP01010006) and co-financed with the support of the Technology Agency of the Czech Republic within the GAMA 2 Programme.
utb.wos.affiliation [Ngwabebhoh, Fahanwi Asabuwa; Zandraa, Oyunchimeg; Saha, Tomas; Stejskal, Jaroslav] Tomas Bata Univ Zlin, Univ Inst, Zlin 76001, Czech Republic; [Stejskal, Jaroslav; Trchova, Miroslava; Kopecky, Dusan] Univ Chem & Technol, Prague 16628 6, Czech Republic; [Pfleger, Jiri] Acad Sci Czech Republ, Inst Macromol Chem, Prague 16206 6, Czech Republic; [Prokes, Jan] Charles Univ Prague, Fac Math & Phys, Prague 18000 8, Czech Republic
utb.scopus.affiliation University Institute, Tomas Bata University in Zlin, Zlin, 760 01, Czech Republic; University of Chemistry and Technology, Prague, Prague 6, 166 28, Czech Republic; Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague 6, 162 06, Czech Republic; Charles University, Faculty of Mathematics and Physics, Prague 8, 180 00, Czech Republic
utb.fulltext.projects TP01010006
utb.fulltext.faculty University Institute
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam