Publikace UTB
Repozitář publikační činnosti UTB

Introduction of an adhesion factor to cube in cube models and its effect on calculated moduli of particulate composites

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Introduction of an adhesion factor to cube in cube models and its effect on calculated moduli of particulate composites en
dc.contributor.author Rech, Julian Niklas
dc.contributor.author Ramakers–van Dorp, Esther
dc.contributor.author Michels, Patrick
dc.contributor.author Möginger, Bernhard
dc.contributor.author Hausnerová, Berenika
dc.relation.ispartof Scientific Reports
dc.identifier.issn 2045-2322 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 12
utb.relation.issue 1
dc.citation.spage 16225
dc.type article
dc.language.iso en
dc.publisher NLM (Medline)
dc.identifier.doi 10.1038/s41598-022-20629-2
dc.relation.uri https://www.nature.com/articles/s41598-022-20629-2
dc.relation.uri https://www.nature.com/articles/s41598-022-20629-2.pdf
dc.description.abstract The cube in cube approach was used by Paul and Ishai-Cohen to model and derive formulas for filler content dependent Young's moduli of particle filled composites assuming perfect filler matrix adhesion. Their formulas were chosen because of their simplicity, and recalculated using an elementary volume approach which transforms spherical inclusions to cubic inclusions. The EV approach led to expression of the composites moduli that allows introducing an adhesion factor kadh ranging from 0 and 1 to take into account reduced filler matrix adhesion. This adhesion factor scales the edge length of the cubic inclusions, thus reducing the stress transfer area between matrix and filler. Fitting the experimental data with the modified Paul model provides reasonable k(adh) for PA66, PBT, PP, PE-LD and BR which are in line with their surface energies. Further analysis showed that stiffening only occurs if k(adh) exceeds root E-M/E-F and depends on the ratio of matrix modulus and filler modulus. The modified model allows for a quick calculation of any particle filled composites for known matrix modulus E-M, filler modulus E-F, filler volume content v(F) and adhesion factor k(adh). Thus, finite element analysis (FEA) simulations of any particle filled polymer parts as well as materials selection are significantly eased. FEA of cubic and hexagonal EV arrangements show that stress distributions within the EV exhibit more shear stresses if one deviates from the cubic arrangement. At high filler contents the assumption that the property of the EV is representative for the whole composite, holds only for filler volume contents up to 15 or 20% (corresponding to 30 to 40 weight %). Thus, for vast majority of commercially available particulate composites, the modified model can be applied. Furthermore, this indicates that the cube in cube approach reaches two limits: (i) the occurrence of increasing shear stresses at filler contents above 20% due to deviations of EV arrangements or spatial filler distribution from cubic arrangements (singular), and (ii) increasing interaction between particles with the formation of particle network within the matrix violating the EV assumption of their homogeneous dispersion. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1011155
utb.identifier.obdid 43884121
utb.identifier.scopus 2-s2.0-85138921598
utb.identifier.wok 000861951000078
utb.identifier.pubmed 36171414
utb.source j-scopus
dc.date.accessioned 2022-10-18T12:15:15Z
dc.date.available 2022-10-18T12:15:15Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic-DKRVO [RP/CPS/2022/003]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Rech, Julian Niklas
utb.contributor.internalauthor Hausnerová, Berenika
utb.fulltext.affiliation Julian Rech 1,3 , Esther Ramakers–van Dorp 1 , Patrick Michels 1 , Bernhard Möginger 1 & Berenika Hausnerova 2,3* 1 Bonn-Rhein-Sieg University of Applied Sciences, Von‑Liebig‑Straße 20, 53359 Rheinbach, Germany. 2 Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 76001 Zlin, Czech Republic. 3 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nam. T.G. Masaryka 5555, 76001 Zlin, Czech Republic. * email: hausnerova@utb.cz
utb.fulltext.dates Received: 11 April 2022 Accepted: 15 September 2022 Published online: 28 September 2022
utb.fulltext.references 1. Thomas, S. Polymer Composites (Wiley-VCH Verlag & Co.KGaA, 2012). 2. Fu, S. Y., Feng, X. Q., Lauke, B. & Mai, Y. W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B-Eng. 39, 933–961. https://doi.org/10.1016/j.compositesb.2008.01.002 (2008). 3. He, D. & Jiang, B. The elastic modulus of filled polymer composites. J. Appl. Polym. Sci. 49, 617–621. https://doi.org/10.1002/app.1993.070490408 (1993). 4. Demir, H., Atikler, U., Balköse, D. & Tihminlioglu, F. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites. Compos. Part A-Appl. Sci. Manuf. 37, 447–456. https://doi.org/10.1016/j.compositesa.2005.05.036 (2006). 5. Jacob, M., Francis, B., Varughese, K. T. & Thomas, S. The effect of silane coupling agents on the viscoelastic properties of rubber biocomposites. Macromol. Mater. Eng. 291, 1119–1126. https://doi.org/10.1002/mame.200600171 (2006). 6. Ku, H., Wang, H., Pattarachaiyakoop, N. & Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B-Eng. 42, 856–873. https://doi.org/10.1016/j.compositesb.2011.01.010 (2011). 7. Dekkers, M. E. J. & Heikens, D. The effect of interfacial adhesion on the tensile behavior of polystyrene–glass-bead composites. J. Appl. Polym. Sci. 28, 3809–3815. https://doi.org/10.1002/app.1983.070281220 (1983). 8. Dibendetto, A. T. & Wambach, A. D. The fracture toughness of epoxy-glass-bead composites. Int. J. Polym. Mater. 1, 159–173. https://doi.org/10.1080/00914037208082114 (1972). 9. Wang, K., Wu, J., Ye, L. & Zeng, H. Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites. Compos. Part A-Appl. Sci. Manuf. 34, 1199–1205. https://doi.org/10.1016/j.compositesa.2003.07.004 (2003). 10. Hill, R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11, 357–372. https://doi.org/10.1016/0022-5096(63)90036-X (1963). 11. Hashin, Z. & Shtrikman, S. A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140. https://doi.org/10.1016/0022-5096(63)90060-7 (1963). 12. Christensen, R. M. & Lo, K. H. Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330. https://doi.org/10.1016/0022-5096(79)90032-2 (1979). 13. Zare, Y. Assumption of interphase properties in classical Christensen-Lo model for Young’s modulus of polymer nanocomposites reinforced with spherical nanoparticles. RSC Adv. 5, 95532–95538. https://doi.org/10.1039/C5RA19330C (2015). 14. Zare, Y. Development of Halpin-Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym. Test. 51, 69–73. https://doi.org/10.1016/j.polymertesting.2016.02.010 (2016). 15. Voigt, W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 274, 573–587. https://doi.org/10.1002/andp.18892741206 (1889). 16. Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zamm-Z Angew Math Me 9, 49–58. https://doi.org/10.1002/zamm.19290090104 (1929). 17. Guth, E. Theory of filler reinforcement. J. Appl. Phys. 16, 20–25. https://doi.org/10.1063/1.1707495 (1945). 18. Einstein, A. Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 19, 289–306. https://doi.org/10.1002/andp.19063240204 (1906). 19. Takayanagi, M., Uemura, S. & Minami, S. Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J. Polym. Sci. Pol. Sym. 5, 113–122. https://doi.org/10.1002/polc.5070050111 (1964). 20. Paul, B. Prediction of constants of multiphase materials. Trans. Am. Inst. Min. Metall. Pet. Eng. 218, 36–41 (1960). 21. Ishai, O. & Cohen, I. J. Elastic properties of filled and porous epoxy composites. Int. J. Mech. Sci. 9, 539–546. https://doi.org/10.1016/0020-7403(67)90053-7 (1967). 22. Hirsch, T. J. Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate. Amer. Conc. I(59), 427–452 (1962). 23. Counto, U. J. The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete. Mag. Concrete Res. 16, 129–138. https://doi.org/10.1680/macr.1964.16.48.129 (1964). 24. Halpin, J. C. & Tsai, S. W. Effects of environmental factors on composite materials. Technical Report. AFML-TR, 67–423 (1969). 25. Nielsen, L. E. Generalized equation for the elastic moduli of composite materials. J. Appl. Phys. 41, 1626–1627. https://doi.org/10.1063/1.1658506 (1970). 26. Lewis, T. B. & Nielsen, L. E. Dynamic mechanical properties of particulate filled composites. J. Appl. Polym. Sci. 14, 1449–1471. https://doi.org/10.1002/app.1970.070140604 (1970). 27. Nielsen, L. E. Dynamic mechanical properties of polymers filled with agglomerated particles. J. Appl. Polym. Sci. 17, 1897–1901. https://doi.org/10.1002/pol.1979.180171106 (1979). 28. Kerner, E. H. The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. B 69, 808–813. https://doi.org/10.1088/0370-1301/69/8/305 (1956). 29. Kopczynska, A. & Ehrenstein, G. W. Oberflächenspannung von Kunststoffen. Messmethoden am LKT. Sonderdrucke am Lehrstuhl für Kunststofftechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, https://www.lkt.tf.fau.de/files/2017/06/Oberflaechenspannung.pdf (2017). 30. Erhard, G. Konstruieren mit Kunststoffen. 4. Auflage, 152–153 (Carl Hanser Verlag, 2008). 31. Ansafirar, A. et al. Assessing effect of the migration of a paraffin wax on the surface free energy of natural rubber. Rubber Chem. Technol. 82, 113–120. https://doi.org/10.5254/1.3557001 (2009). 32. Lohrmann, M. Zweidimensionale Ermittlung der Änderung des mechanischen Verhaltens von gefüllten Elastomeren bei Variation der Füllstoffart. Fraunhofer-Institut für Chemische Technologie ICT (1996). 33. Chimeni, D. Y., Vallée, E., Sorellis, L. & Rodrigue, D. Effect of glass bead size and content on the thermomechanical properties of polyethylene composites. Polym. Eng. Sci. 58, 1826–1836. https://doi.org/10.1002/pen.24788 (2018). 34. Balkan, O. & Demirer, H. Mechanical properties of glass bead- and wollastonite-filled isotactic-polypropylene composites modified with thermoplastic elastomers. Polym. Compos. 31, 1285–1308. https://doi.org/10.1002/pc.20953 (2010). 35. Möginger, B. & Fritz, U. Viskoelastische Spannungs-Dehnungs-Beziehung thermoplastischer Polymere: Herleitung und experimentelle Überprüfung. Kautschuk und Gummi Kunststoffe 47(4), 256–261 (1994). 36. Kashfipour, M. A., Mehra, N. & Zhu, J. A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv. Compos. Hybrid Mater. 1, 415–439. https://doi.org/10.1007/s42114-018-0022-9 (2018).
utb.fulltext.sponsorship The author B.H. acknowledges the financial support of the Ministry of Education, Youth and Sports of the Czech Republic-DKRVO (RP/CPS/2022/003).
utb.wos.affiliation [Rech, Julian; Ramakers-van Dorp, Esther; Michels, Patrick; Moginger, Bernhard] Bonn Rhein Sieg Univ Appl Sci, Von Liebig Str 20, D-53359 Rheinbach, Germany; [Hausnerova, Berenika] Tomas Bata Univ Zlin, Fac Technol, Vavreckova 275, Zlin 76001, Czech Republic; [Rech, Julian; Hausnerova, Berenika] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Nam TG Masaryka 5555, Zlin 76001, Czech Republic
utb.scopus.affiliation Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Straße 20, Rheinbach, 53359, Germany; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin ,nam. T.G. Masaryka 5555Zlin 76001, Czech Republic; Faculty of Technology, Tomas Bata University in Zlin ,Vavreckova 275Zlin 76001, Czech Republic
utb.fulltext.projects RP/CPS/2022/003
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International