Kontaktujte nás | Jazyk: čeština English
dc.title | Slicing aided large scale tomato fruit detection and counting in 360-degree video data from a greenhouse | en |
dc.contributor.author | Turečková, Alžběta | |
dc.contributor.author | Tureček, Tomáš | |
dc.contributor.author | Janků, Peter | |
dc.contributor.author | Vařacha, Pavel | |
dc.contributor.author | Šenkeřík, Roman | |
dc.contributor.author | Jašek, Roman | |
dc.contributor.author | Psota, Václav | |
dc.contributor.author | Štěpánek, Vít | |
dc.contributor.author | Komínková Oplatková, Zuzana | |
dc.relation.ispartof | Measurement: Journal of the International Measurement Confederation | |
dc.identifier.issn | 0263-2241 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1873-412X Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 204 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier B.V. | |
dc.identifier.doi | 10.1016/j.measurement.2022.111977 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0263224122011733 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0263224122011733/pdfft?md5=2eec9583c2a600fd1c55189d83e69ebc&pid=1-s2.0-S0263224122011733-main.pdf | |
dc.subject | tomato fruit detection | en |
dc.subject | tomato fruit counting | en |
dc.subject | 360-degree video | en |
dc.subject | image processing | en |
dc.subject | computer vision | en |
dc.subject | deep CNN | en |
dc.subject | slicing aided inference | en |
dc.subject | robotic farming | en |
dc.description.abstract | This paper proposes an automated tomato fruit detection and counting process without a need for any human intervention. First of all, wide images of whole tomato plant rows were extracted from a 360-degree video taken in a greenhouse. These images were utilized to create a new object detection dataset. The original tomato detection methodology uses a deep CNN model with slicing-aided inference. The process encompasses two stages: first, the images are cut into patches for object detection, and consequently, the predictions are stitched back together. The paper also presents an extensive study of post-processing parameters needed to stitch object detections correctly, especially on the patch's borders. Final results reach 83.09% F1 score value on a test set, proving the suitability of the proposed methodology for robotic farming. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011191 | |
utb.identifier.obdid | 43884088 | |
utb.identifier.scopus | 2-s2.0-85140136384 | |
utb.identifier.wok | 000876254100002 | |
utb.identifier.coden | MSRMD | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-11-29T07:49:17Z | |
dc.date.available | 2022-11-29T07:49:17Z | |
dc.description.sponsorship | IGA/CebiaTech/2022/ 001; Technology Agency of the Czech Republic, TACR: FW01010381 | |
dc.description.sponsorship | Technology Agency of the Czech Republic [FW01010381]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2022/001]; Faculty of Applied Informatics, Tomas Bata University in Zlin | |
utb.contributor.internalauthor | Turečková, Alžběta | |
utb.contributor.internalauthor | Tureček, Tomáš | |
utb.contributor.internalauthor | Janků, Peter | |
utb.contributor.internalauthor | Vařacha, Pavel | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.contributor.internalauthor | Jašek, Roman | |
utb.contributor.internalauthor | Komínková Oplatková, Zuzana | |
utb.fulltext.affiliation | Alžběta Turečková a, Tomáš Tureček a, Peter Janků a, Pavel Vařacha a, Roman Šenkeřík a, Roman Jašek a, Václav Psota c, Vit Štěpánek b, Zuzana Komínková Oplatková a,∗ a Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam. T. G. Masaryka 5555, Zlin, 760 01, Czech Republic b NWT a.s., Trida Tomase Bati 269, Zlin, 760 01, Czech Republic c Farma Bezdinek, s.r.o., K Bezdinku 1515, Dolni Lutyne, 735 53, Czech Republic ∗ Corresponding author. E-mail address: oplatkova@utb.cz (Z. Komínková Oplatková). | |
utb.fulltext.dates | Received 29 January 2022 Received in revised form 22 August 2022 Accepted 17 September 2022 Available online 23 September 2022 | |
utb.fulltext.references | [1] K. Fuglie, The growing role of the private sector in agricultural research and development world-wide, Glob. Food Secur. 10 (2016) 29–38, http://dx.doi.org/10.1016/j.gfs.2016.07.005, URL https://www.sciencedirect.com/science/article/pii/S2211912416300190. [2] T. Short, C. Draper, M. Donnell, Web-based decision support system for hydroponic vegetable production, in: International Conference on Sustainable Greenhouse Systems-Greensys2004 691, 2004, pp. 867–870. [3] R. Shamshiri, Measuring optimality degrees of microclimate parameters in protected cultivation of tomato under tropical climate condition, Measurement 106 (2017) 236–244, http://dx.doi.org/10.1016/j.measurement.2017.02.028, URL https://www.sciencedirect.com/science/article/pii/S0263224117301276. [4] Y. Zhao, L. Gong, Y. Huang, C. Liu, A review of key techniques of visionbased control for harvesting robot, Comput. Electron. Agric. 127 (2016) 311–323, http://dx.doi.org/10.1016/j.compag.2016.06.022, URL https://www.sciencedirect.com/science/article/pii/S0168169916304227. [5] A. Gongal, S. Amatya, M. Karkee, Q. Zhang, K. Lewis, Sensors and systems for fruit detection and localization: A review, Comput. Electron. Agric. 116 (2015) 8–19. [6] X. Wei, K. Jia, J. Lan, Y. Li, Y. Zeng, C. Wang, Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot, Optik 125 (19) (2014) 5684–5689. [7] S. Wan, S. Goudos, Faster R-CNN for multi-class fruit detection using a robotic vision system, Comput. Netw. 168 (2020) 107036, http://dx.doi.org/10.1016/j.comnet.2019.107036, URL https://www.sciencedirect.com/science/article/pii/S1389128619306978. [8] H. Mureşan, M. Oltean, Fruit recognition from images using deep learning, 2017, arXiv preprint arXiv:1712.00580. [9] Z.-F. Xu, R.-S. Jia, Y.-B. Liu, C.-Y. Zhao, H.-M. Sun, Fast method of detecting tomatoes in a complex scene for picking robots, IEEE Access 8 (2020) 55289–55299, http://dx.doi.org/10.1109/ACCESS.2020.2981823. [10] G. Liu, J.C. Nouaze, P.L. Touko Mbouembe, J.H. Kim, YOLO-tomato: A robust algorithm for tomato detection based on YOLOv3, Sensors 20 (7) (2020) http://dx.doi.org/10.3390/s20072145, URL https://www.mdpi.com/1424-8220/20/7/2145. [11] Y. Mu, T.-S. Chen, S. Ninomiya, W. Guo, Intact detection of highly occluded immature tomatoes on plants using deep learning techniques, Sensors 20(10) (2020) http://dx.doi.org/10.3390/s20102984, URL https://www.mdpi.com/1424-8220/20/10/2984. [12] A.I.B. Parico, T. Ahamed, Real time pear fruit detection and counting using YOLOv4 models and deep SORT, Sensors 21 (14) (2021) http://dx.doi.org/10.3390/s21144803, URL https://www.mdpi.com/1424-8220/21/14/4803.[13] I.-T. Chen, H.-Y. Lin, Detection, counting and maturity assessment of cherry tomatoes using multi-spectral images and machine learning techniques, in: VISIGRAPP, 5: VISAPP, 2020, pp. 759–766. [14] A. Rosenfeld, M. Thurston, Edge and curve detection for visual scene analysis, IEEE Trans. Comput. 100 (5) (1971) 562–569. [15] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, CVPR’05, IEEE, 2005, pp. 886–893. [16] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, CVPR 2001, IEEE, 2001, p. I. [17] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell. 39 (6) (2016) 1137–1149. [18] N. Bodla, B. Singh, R. Chellappa, L.S. Davis, Soft-NMS — Improving object detection with one line of code, in: 2017 IEEE International Conference on Computer Vision, ICCV, 2017, pp. 5562–5570, http://dx.doi.org/10.1109/ICCV.2017.593. [19] J. Chu, Y. Zhang, S. Li, L. Leng, J. Miao, Syncretic-NMS: A merging nonmaximum suppression algorithm for instance segmentation, IEEE Access 8 (2020) 114705–114714, http://dx.doi.org/10.1109/ACCESS.2020.3003917. [20] B.C. Russell, A. Torralba, K.P. Murphy, W.T. Freeman, LabelMe: a database and web-based tool for image annotation, Int. J. Comput. Vis. 77 (1–3) (2008) 157–173. [21] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell. 39 (6) (2017) 1137–1149. [22] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, IEEE, Las Vegas, NV, USA, 2016, pp. 770–778, http://dx.doi.org/10.1109/CVPR.2016.90, URL http://ieeexplore.ieee.org/document/7780459/. [23] F.C. Akyon, C. Cengiz, S.O. Altinuc, D. Cavusoglu, K. Sahin, O. Eryuksel, SAHI: A Lightweight Vision Library for Performing Large Scale Object Detection and Instance Segmentation, Zenodo, 2021, http://dx.doi.org/10.5281/zenodo.5718950. [24] A. Koirala, K.B. Walsh, Z. Wang, C. McCarthy, Deep learning – method overview and review of use for fruit detection and yield estimation, Comput. Electron. Agric. 162 (2019) 219–234, http://dx.doi.org/10.1016/j.compag.2019.04.017, URL https://www.sciencedirect.com/science/article/pii/S0168169919301164. [25] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick, Microsoft coco: Common objects in context, in: European Conference on Computer Vision, Springer, 2014, pp. 740–755. [26] D. Hoiem, Y. Chodpathumwan, Q. Dai, Diagnosing error in object detectors, in: European Conference on Computer Vision, Springer, 2012, pp. 340–353. | |
utb.fulltext.sponsorship | This work was supported by the Technology Agency of the Czech Republic, under the project No. FW01010381, by Internal Grant Agency of Tomas Bata University under the project no. IGA/CebiaTech/2022/001, and further by the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin. | |
utb.wos.affiliation | [Tureckova, Alzbeta; Turecek, Tomas; Janku, Peter; Varacha, Pavel; Senkerik, Roman; Jasek, Roman; Oplatkova, Zuzana Kominkova] Tomas Bata Univ Zlin, Fac Appl Informat, Nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Stepanek, Vit] NWT AS, Trida Tomase Bati 269, Zlin 76001, Czech Republic; [Psota, Vaclav] Farma Bezdinek Sro, K Bezdinku 1515, Dolni Lutyne 73553, Czech Republic | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam. T. G. Masaryka 5555, Zlin, 760 01, Czech Republic; NWT a.s., Trida Tomase Bati 269, Zlin, 760 01, Czech Republic; Farma Bezdinek, s.r.o., K Bezdinku 1515, Dolni Lutyne, 735 53, Czech Republic | |
utb.fulltext.projects | TAČR FW01010381 | |
utb.fulltext.projects | IGA/CebiaTech/2022/001 | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - |